
ICT167 Principles of Computer Science

 Assignment 2

Jin Cherng Chong

33170193

Murdoch University

Table of content

Title: p1

Requirements/Specification: p3

User guide: p4-p6

Structure/Design/Algorithm: p7-p42

Limitations: p42

Testing: p43-p80

Source program listings: p81-p128

Introduction

This documentation explains my ICT167 Assignment 2 program. The files that are referenced

throughout the documentation are- Client.java, CourseWorkStudent.java, ResearchStudent.java and

Student.java, student.txt, courseWorkMark.txt, and researchStudentMark.txt

The Client.java contains the code for the client program and the Student.java contains the base class

representing students. Both CourseWorkStudent class and ResearchStudent class are subclasses of

the base class Students. Therefore, the attributes and methods found in the Student.java file are

inherited by both the CourseWorkStudent.java and ResearchStudent.java file. This documentation is

for version: 0.1 which is the most up to date version as of 23/10/2020. This program is called student

marks and information tracker. it can be utilised in a school where you have students and the

students have assessments to complete. This program is meant to be used for only one unit per

student. The files student.txt, courseWorkMark.txt, and researchStudentMark.txt contains input

read in by the program.

Requirements/Specification

This student marks and information tracker program inputs the student information by reading from

student.txt file and storing it into an arrayList of student objects. The option 2 menu is in in charge of

reading either the courseWorkMark.txt or the researchStudentMark.txt which consist of the marks

obtained by the students and storing it in the relevant student object. The program begins with

asking the client whether they are dealing with researchStudent (R) or coursework students (C).

Their answer will effect some of the menu options processing. In particular menu option 2, 5, and 6

will be effected. For example, if the client indicated they are dealing with coursework students then

for option 5 only for coursework students will be their overall mark and grade be computed and

outputted. The menu of options displayed after the client indicates whether they are dealing with

research or coursework students will keep redisplaying until the client select option 1 which is to

quit the menu.

Assumption-

 Assume client will input data of the correct data type

 Assume the youngest possible student in the program can be from the year 2000

 Assume if students do not have mark information in text (CourseWorkStudentMark.txt OR

ResearchStudentMark.txt) then the student will be given the default marks of 0.

 Assume input of each student coming from student.txt, researchStudentMark.txt and

courseWorkStudentMark.txt will be in one line, of the correct data type, in order and not

empty

 Assume (related to option 6 in the menu) the average overall mark is the average overall

mark for either coursework students OR research students. Combining the average

coursework students and research student average overall mark to get the average for both

would not be possible since those two average marks are fundamentally different. It would

be like combining the average height of a people in a classroom with the average weight of a

people in a classroom.

 Assume (related to option 6) this is for every coursework or research students held in

arrayList and with or without mark information in text CourseWorkStudentMark.txt OR

ResearchStudentMark.txt). The client will have already selected option 2 before using

option 6.

 Assume (related to option 5 in the menu) either coursework or research students will be

computed and outputted. Whether it is a coursework or research students is determined by

the client prior to the menu being displayed. The client will enter “C” or “R” indicating their

intention.

 Assume (related to option 5 in the menu) the client will have already selected option 2

before using option 5. Option 2 sets the marks needed for option 5 thus we assume the

client will have already gone through option 2

 Assume each student will have a unique student ID

 Assume calculating overallMark rounded up if decimal >= 0.5 or rounded down if < 0.5

User Guide

Option 1- Run with jar

Step 1:

 Extract the ICT167Assignment2 folder to desktop

Step 2:

 Open up command prompt

 Go to ICT167Assignment2 directory

o Command: Cd [ICT167Assignment2folder]

Step 3:

 Once in: ICT167Assignment2 folder Execute the ICT167Assignment2.jar

o Command: java -jar ICT167Assignment2.jar

Step 4: Well done! You can now type away in the command prompt

Structure/Design/Algorithm

Additional method for Client class-

Methods Justification

CalculateOverallGrade(overallMark) This method takes the overallMark

achieved by either the coursework or

research students and calculates the

awarded grade for student based of the

overall mark. This was done to avoid code

duplication since having the same method

in two classes would inefficient

WriteRecord() This method utilises polymorphism to

have the same method name but output

different number of attributes for

different student types

Selection sort A selection sort is used because it is one

of the most efficient algorithms to sort an

array of numbers in ascending order. It

was selected over a bubble sort because it

is more efficient in that the number of

loops required to sort through the

numbers to sort them is less with a

selection sort

UML diagram for the client program and Student, CourseWorkStudent and ResearchStudent class

Structure chart for client program- (zoom to view more clearly)

Low level algorithm for client program-

Procedure void Main()

 Create studentList as new ArrayList()

 Integer StudentNo = 1;

 Character studentType = 'A'

 String typeOfStudent

 studentType = GetTypeOfStudent()

 while(hasNext(student.txt)) then

 Create student as new student()

 Boolean invalidStudentInformation = true

 title = next(student.txt)

 firstName = next(student.txt)

 surname = next(student.txt)

 studentNum = parseLong(next(student.txt))

 DOB = next(student.txt)

 String[] splitDOB = split(DOB, "/")

 day = parseInteger(splitDOB[0])

 month = parseInteger(splitDOB[1])

 year = parseInteger(splitDOB[2])

 typeOfStudent = next(student.txt)

 if(typeOfStudent == "CourseWorkStudent") then

 Create student as new CourseWorkStudent()

 else if(typeOfStudent == "ResearchStudent") then

 Create student as new ResearchStudent()

 else

 Output "Error: Incorrect student type specified for student"

 EndIf

 SetTitle(Student, title)

 SetFirstName(Student, firstName)

 SetLastName(Student, lastName)

 SetStudentNum(Student, studentNum)

 SetDateOfBirth(Student, day, month, year)

 SetStudentType(typeOfStudent)

 invalidStudentInformation = (GetTitle(Student) == "None" OR

GetFirstName(Student) == "None" OR GetLastName(Student) == "None" OR GetStudentNum(Student) ==

0 OR GetDay(Student) == 0 OR GetMonth(Student) == 0 OR GetYear(Student) == 0 OR

GetStudentType(Student) == "None")

 if(invalidStudentInformation) then

 Output "Error: Invalid information for a student: . Therefore the

program will not save the student information " + StudentNo

 else

 Add(studentList, Student)

 EndIf

 StudentNo++

 EndWhile

 DspMenu(studentList, studentType)

EndProcedure

Procedure character GetTypeOfStudent()

 Boolean invalidStudentType = true

 Character studentType = 'A'

 do

 Output "Type C if you're dealing with coursework students OR R if dealing with

research students"

 Input studentType

 studentType = toUpperCase(studentType)

 if(studentType == C OR studentType == R) then

 invalidStudentType = false

 else

 Output "Invalid option!"

 EndIF

 while(invalidStudentType)

 return studentType

EndProcedure

Procedure void DspMenu(ArrayList studentList, Character studentType)

 Integer option = 0

 while(option != 1) then

 Output "Enter an option: "

 Input option

 Switch(option)

 Case 1:

 Output "Farewell! Exiting menu"

 Case 2:

 officalStudentList = SelectOption2(officalStudentList,

studentType)

 Case 3:

 officalStudentList = SelectOption3(officalStudentList)

 Case 4:

 SelectOption4(officalStudentList)

 Case 5:

 officalStudentList = SelectOption5(officalStudentList,

studentType)

 Case 6:

 SelectOption6(officalStudentList, studentType)

 Case 7:

 SelectOption7(officalStudentList)

 Case 8:

 SelectOption8(officalStudentList)

 Case 9:

 officalStudentList = SelectOption9(officalStudentList)

 SelectOption4(officalStudentList)

 Case 10:

 officalStudentList = SelectOption9(officalStudentList)

 SelectOption10(officalStudentList)

 default:

 Output "Invalid option!"

 EndCase

 EndWhile

EndProcedure

Procedure ArrayList SelectOption2(ArrayList officalStudentList, Character studentType)

 Long studentNum = 0

 Long num

 while(hasNext(courseWorkStudentMark.txt) AND studentType = 'C') then

 num = Next(courseWorkStudentMark.txt)

 for Person To officalStudentList Do

 studentNum = GetStudentNum(person)

 if(num == studentNum) then

 //Downcast student (super class) --> courseWork student (sub

class)

 assignment1Mark = next(CourseWorkStudentMark.txt)

 SetAssignment1Mark(CourseWorkStudent, assignment1Mark)

 assignment2Mark = next(CourseWorkStudentMark.txt)

 SetAssignment2Mark(CourseWorkStudent, assignment2Mark)

 practicalMark = next(CourseWorkStudentMark.txt)

 SetPracticalMark(CourseWorkStudent, practicalMark)

 examMark = next(CourseWorkStudentMark.txt)

 SetExamMark(CourseWorkStudent, examMark)

 overallMark = CalculateCwMark(CourseWorkStudent)

 overallGrade = CalculateGrade(overallMark)

 SetFinalGrade(CourseWorkStudent, overallGrade)

 EndIF

 EndFor

 EndWhile

 while(hasNext(researchStudentMark.txt) AND studentType = 'R') then

 num = Next(researchStudentMark.txt)

 for Person To officalStudentList Do

 studentNum = GetStudentNum(person)

 if(num == studentNum) then

 //Downcast student (super class) --> research student (sub

class)

 assignment1Mark = next(researchStudentMark.txt)

 SetAssignment1Mark(researchStudentMark, assignment1Mark)

 assignment2Mark = next(researchStudentMark.txt)

 SetAssignment2Mark(researchStudentMark, assignment2Mark)

 practicalMark = next(researchStudentMark.txt)

 SetPracticalMark(researchStudentMark, practicalMark)

 examMark = next(researchStudentMark.txt)

 SetExamMark(researchStudentMark, examMark)

 overallMark = CalculateRsMark(researchStudentMark)

 overallGrade = CalculateGrade(overallMark)

 SetFinalGrade(researchStudentMark, overallGrade)

 EndIF

 EndFor

 EndWhile

 return officalStudentList

EndProcedure

Procedure ArrayList SelectOption3(ArrayList officalStudentList)

 Long clientNum = 0

 Long numOfStudent = 0

 String firstNameOfStudent

 String surnameOfStudent

 character confirmation = 'N'

 Boolean studentNumExist = false

 Output "Enter the student number identifying the student you wish to delete"

 Input clientNum

 for person To officalStudentList Do

 firstNameOfStudent = GetFirstName(person)

 surnameOfStudent = GetLastName(person)

 numOfStudent = GetStudentNum(person)

 if(clientNum == numOfStudent) then

 Output "Are you sure you want to remove StudentID: (Y/N)?" +

firstNameOfStudent + surnameOfStudent + numOfStudent

 Input confirmation

 confirmation = toUpperCase(Character, confirmation)

 studentNumExist = true

 EndIf

 if(confirmation == 'Y') then

 remove(officalStudentList, person)

 return officalStudentList

 else

 Output "Student not removed"

 EndIf

 EndFor

 if(!studentNumExist) then

 Output "Student number entered does not exist"

 EndIf

 return officalStudentList

EndProcedure

Procedure void SelectOption4(ArrayList officalStudentList)

 for person To officalStudentList Do

 WriteRecord(officalStudentList, person)

 Output "------------------------------------"

 EndFor

EndProcedure

Procedure ArrayList SelectOption5(ArrayList officalStudentList, character studentType)

 Integer overallMark = 0

 Long num = 0

 String overallGrade

 Long studentNum

 while(hasNext(CourseWorkStudentMark.txt) AND studentType == 'C') then

 num = next(CourseWorkStudentMark.txt)

 for Person To officalStudentList Do

 studentNum = GetStudentNum(Person)

 if(num = studentNum) then

 //Downcast object from arrayList (student) -->

courseWorkStudent object

 overallMark = CalculateCwMark(CourseWorkStudent)

 overallGrade = CalculateGrade(overallMark)

 SetFinalGrade(CourseWorkStudent, overallGrade)

 WriteRecord(CourseWorkStudent)

 Output "------------------------------------"

 EndIF

 EndFor

 nextLine(CourseWorkStudentMark.txt)

 EndWhile

 while(hasNext(ResearchStudentMark.txt) AND studentType == 'R') then

 num = next(CourseWorkStudentMark.txt)

 for Person To officalStudentList Do

 studentNum = GetStudentNum(Person)

 if(num = studentNum) then

 //Downcast object from arrayList (student) -->

researchStudent object

 overallMark = CalculateRsMark(ResearchStudent)

 overallGrade = CalculateGrade(overallMark)

 SetOverallGrade(ResearchStudent, overallGrade)

 WriteRecord(ResearchStudent)

 Output "------------------------------------"

 EndIF

 EndFor

 nextLine(ResearchStudentMark.txt)

 EndWhile

 return ArrayList

EndProcedure

Procedure void SelectOption6(ArrayList officalStudentList, character studentType)

 Integer mark = 0

 Integer totalMarkRS = 0

 Integer totalMarkCw = 0

 Integer counterCw = 0

 Integer counterRs = 0

 Boolean correctStudentType = false

 Integer averageAbove = 0

 Integer averageBelow = 0

 Strint type

 Integer averageMarkCw = 0

 Integer averageMarkRs = 0

 for Person To officalStudentList Do

 type = GetStudentType(person)

 if(type = "CourseWorkStudent") then

 //Downcast object from arrayList (student) --> courseWorkStudent object

 mark = CalculateCwMark(courseWorkStudent)

 totalMarkCw += mark

 counterCw++

 EndIF

 if(type = "ResearchStudent") then

 //Downcast object from arrayList (student) --> ResearchStudent object

 mark = CalculateRsMark(ResearchStudent)

 totalMarkRs += mark

 counterRs++

 EndIF

 EndFor

 averageMarkCw = totalMarkCw / counterCw

 averageMarkRs = totalMarkRs / counterRs

 for Integer i = 0 To (Size(officalStudentList) AND studentType = 'C') Do

 correctStudentType = false

 Student person = get(officalStudentList, i)

 type = GetStudentType(person)

 if(type = "CourseWorkStudent") then

 //Downcast object from arrayList (student) --> courseWorkStudent object

 mark = CalculateCwMark(courseWorkStudent)

 correctStudentType = true

 EndIF

 if(mark >= averageMarkCw AND correctStudentType) then

 averageAbove++

 EndIF

 if(mark <= averageMarkCw AND correctStudentType) then

 averageBelow++

 EndIF

 EndFor

 for Integer i = 0 To (Size(officalStudentList) AND studentType = 'R') Do

 correctStudentType = false

 Student person = get(officalStudentList, i)

 type = GetStudentType(person)

 if(type = "CourseWorkStudent") then

 //Downcast object from arrayList (student) --> researchStudent object

 mark = CalculateRsMark(researchStudent)

 correctStudentType = true

 EndIF

 if(mark >= averageMarkRs AND correctStudentType) then

 averageAbove++

 EndIF

 if(mark <= averageMarkRs AND correctStudentType) then

 averageBelow++

 EndIF

 EndFor

 Output "Number of students above average- " + averageAbove

 Output "Number of students below average- " + averageBelow

EndProcedure

Procedure void SelectOption7(ArrayList officalStudentList)

 Long num = 0

 Long studentNum = 0

 Boolean studentNotFound = true

 Output "Enter a student number: "

 Input num

 for Person To officalStudentList Do

 studentNum = GetStudentNum(person)

 if(num == studentNum) then

 WriteRecord(person)

 studentNotFound = false

 EndIF

 EndFor

 if(studentNotFound) then

 Output "Student not found in arrayList"

 EndIF

 Output "------------------------------------"

EndProcedure

Procedure void SelectOption8(ArrayList officalStudentList)

 String fName

 String lName

 String studentFName

 String studentLName

 Boolean studentNotFound = true

 Output "Enter first name of student"

 Input fName

 Output "Enter last name of student"

 Input lName

 for Person To officalStudentList Do

 studentFName = GetFirstName(person)

 studentLName = GetLastName(person)

 if(fName == studentFName AND lName == studentLName) then

 WriteRecord(person)

 studentNotFound = false

 Output "------------------------------------"

 EndIF

 EndFor

 if(studentNotFound) then

 Output "Student not found in arrayList"

 EndIF

EndProcedure

Procedure ArrayList SelectOption9(ArrayList officalStudentList)

 for Integer i = 0 To (i < Size(officalStudentList) - 1) Do

 Integer indexOfUnsortedSmallest = i

 for Integer j = i + 1 To (j < Size(officalStudentList)) Do

 Create person as a new Student()

 person = Get(officalStudentList, indexOfUnsortedSmallest)

 Long currentSmallNum = GetStudentNum(person)

 Create secondPerson as a new Student()

 secondPerson = Get(officalStudentList, j)

 Long afterNum = GetStudentNum(secondPerson)

 if(afterNum < currentSmallNum) then

 indexOfUnsortedSmallest = j

 EndIF

 EndFor

 Create tempPerson as a new Student()

 tempPerson = Get(officalStudentList, indexOfUnsortedSmallest)

 Create tempPerson2 as a new Student()

 tempPerson2 = Get(officalStudentList, i)

 officalStudentList.Set(indexOfUnsortedSmallest, tempPerson2)

 officalStudentList.Set(i, tempPerson)

 EndFor

 return officalStudentList

EndProcedure

Procedure void SelectOption10(ArrayList officalStudentList)

 String OutputFilePath = "output.csv"

 Create outputStream as new PrintWriter(OutputFilePath)

 Write(outputStream, "Title" + ",")

 Write(outputStream, "Name" + ",")

 Write(outputStream, "Student Number" + ",")

 Write(outputStream, "Date of Birth" + ",")

 Write(outputStream, "StudentType" + ",")

 Write(outputStream, "OverallMark" + ",")

 Write(outputStream, "Grade" + ",")

 Write(outputStream, "Assessment1" + ",")

 Write(outputStream, "Assessment2" + ",")

 Write(outputStream, "Assessment3" + ",")

 Write(outputStream, "Assessment4" + ",")

 for Person To officalStudentList Do

 Write(outputStream, "/n")

 String title = GetTitle(person)

 String firstName = GetFirstName(person)

 String lastName = GetLastName(person)

 Long studentNum = GetStudentNum(person)

 Integer day = GetDay(person)

 Integer month = GetMonth(person)

 Integer year = GetYear(person)

 String studentType = GetStudentType(person)

 if(studentType == "courseWorkStudent") then

 //Downcast object from arrayList (student) --> courseWorkStudent object

 Integer assignment1 = GetAssignment1Mark(courseWorkStudent)

 Integer assignment2 = GetAssignment2Mark(courseWorkStudent)

 Integer practicalMark = GetPracticalMark(courseWorkStudent)

 Integer examMark = GetExamMark(courseWorkStudent)

 Integer overallMark = CalculateCwMark(courseWorkStudent)

 String finalGrade = CalculateOverallGrade(overallMark)

 Write(outputStream, title + ",")

 Write(outputStream, firstName + " " + lastName + ",")

 Write(outputStream, studentNum + ",")

 Write(outputStream, day + "/" + month + "/" + year + ",")

 Write(outputStream, studentType + ",")

 Write(outputStream, overallMark + ",")

 Write(outputStream, finalGrade + ",")

 Write(outputStream, assignment1 + ",")

 Write(outputStream, assignment2 + ",")

 Write(outputStream, assignment3 + ",")

 Write(outputStream, assignment4 + ",")

 EndIF

 if(studentType == "researchStudent") then

 //Downcast object from arrayList (student) --> researchStudent object

 Integer proposalMark = GetProposalMark(researchStudent)

 Integer oralPresenationMark = GetOralPresenationMark(researchStudent)

 Integer thesisMark = GetThesisMark(researchStudent)

 Integer overallMark = CalculateRsMark(researchStudent)

 String finalGrade = CalculateOverallGrade(overallMark)

 Write(outputStream, title + ",")

 Write(outputStream, firstName + " " + lastName + ",")

 Write(outputStream, studentNum + ",")

 Write(outputStream, day + "/" + month + "/" + year + ",")

 Write(outputStream, studentType + ",")

 Write(outputStream, overallMark + ",")

 Write(outputStream, finalGrade + ",")

 Write(outputStream, proposalMark + ",")

 Write(outputStream, oralPresenationMark + ",")

 Write(outputStream, thesisMark + ",")

 EndIF

 Close(outputStream)

 Output "Finished writing to file"

 EndFor

EndProcedure

Procedure String CalculateOverallGrade(Integer overallMark)

 String overallGrade

 if(overallMark < 0 OR overllMark > 100) then

 Output "Overall mark not valid"

 else if(overallGrade >= 80) then

 overallGrade = HD

 else if(overallGrade >= 70) then

 overallGrade = D

 else if(overallGrade >= 60) then

 overallGrade = C

 else if(overallGrade >= 50) then

 overallGrade = P

 else if(overallGrade >= 0) then

 overallGrade = N

 EndIf

 return overallGrade

EndProcedure

Low level algorithm for student class-

private String title

private String firstName

private String lastName

private Long studentNum

private Integer day

private Integer month

private Integer year

private String studentType

Procedure Student()

 title = "None"

 firstName = "None"

 lastName = "None"

 studentNum = 0

 day = 0

 month = 0

 year = 0

 studentType = "None"

EndProcedure

Procedure Student(String initalTitle, String initialFirstName, String initialLastName, Long

initialStudentNum, Integer initialDay, Integer initialMonth, Integer initialYear, String

initialStudentType)

 title = initalTitle

 firstName = initialFirstName

 lastName = initialLastName

 studentNum = initialStudentNum

 day = initialDay

 month = initialMonth

 year = initialYear

 studentType = initialStudentType

EndProcedure

Procedure void SetTitle(String newTitle)

 if(!newTitle Is Empty AND newTitle != null) then

 title = newTitle

 else

 Output "Error: Invalid title for student"

 EndIf

EndProcedure

Procedure void SetFirstName(String newFirstName)

 if(!newFirstName Is Empty AND newFirstName != null) then

 firstName = newFirstName

 else

 Output "Error: Invalid first name for student"

 EndIf

EndProcedure

Procedure void SetLastName(String newLastName)

 if(!newLastName Is Empty AND newLastName != null) then

 lastName = newLastName

 else

 Output "Error: Invalid last name for student"

 EndIf

EndProcedure

Procedure void SetStudentNum(Long newStudentNum) //Have to deal with duplicate student ID

 studentNum = newStudentNum

EndProcedure

Procedure void SetDateOfBirth(Integer newDay, Integer newMonth, Integer newYear)

 Integer oldDay = day

 Integer oldMonth = month

 Boolean maxTwentyNineDay = (newDay >= 1 AND newDay <= 29)

 Boolean maxThirtyDay = (newDay >= 1 AND newDay <= 30)

 Boolean maxThrityOneDay = (newDay >= 1 AND newDay <=31)

 Boolean Feb = (newMonth == 2)

 Boolean thirtyDayMonth = (newMonth == 4 OR newMonth == 6 OR newMonth == 9 OR newMonth

== 11)

 Boolean thirtyOneDayMonth = (newMonth == 1 OR newMonth == 3 OR newMonth == 5 OR

newMonth == 7 OR newMonth == 8 OR newMonth == 10 OR newMonth == 12)

 if(newMonth >= 1 AND newMonth <= 12) then

 month = newMonth

 else

 Output "Error: Invalid month entered. Therefore, date of birth for student not

set"

 return

 EndIF

 if(maxTwentyNineDay AND Feb) then

 day = newDay

 else if(maxThirtyDay AND thirtyDayMonth) then

 day = newDay

 else if(maxThrityOneDay AND thirtyOneDayMonth) then

 day = newDay

 else

 Output "Error: Invalid day for student. Therefore, date of birth for student

not set"

 month = oldMonth

 return

 EndIF

 if(newYear >= 2000) then

 year = newYear

 else

 Output "Error: Invalid year entered for student. Therefore, date of birth for

student not set"

 month = oldMonth

 day = oldDay

 return

 EndIF

EndProcedure

Procedure void SetStudentType(String newStudentType)

 if(newStudentType == "CourseWorkStudent") then

 studentType = "CourseWorkStudent"

 else if(newStudentType = "ResearchStudent") then

 studentType = "ResearchStudent"

 else

 Output "Error: Invalid student type for student"

 EndIf

EndProcedure

Procedure String GetTitle

 return title

EndProcedure

Procedure String GetFirstName

 return firstName

EndProcedure

Procedure String GetLastName

 return lastName

EndProcedure

Procedure Long GetStudentNum

 return studentNum

EndProcedure

Procedure Integer GetDay

 return day

EndProcedure

Procedure Integer GetMonth

 return month

EndProcedure

Procedure Integer GetYear

 return year

EndProcedure

Procedure String GetStudentType

 return studenType

EndProcedure

Procedure Boolean IsEqual(Student otherStudent)

 Boolean sameName = (this.firstName Equals otherStudent.firstName AND this.lastName

Equals otherStudent.lastName)

 Boolean sameDOB = (this.day == otherStudent.day AND this.month == otherStudent.month

AND this.year == otherStudent.year)

 if(SameName AND sameDOB) then

 return true

 else

 return false

 EndIf

EndProcedure

Procedure void WriteRecord()

 Output "Title- " + title

 Output "Name- " + firstName + lastName

 Output "studentNum- " + studentNum

 Output "Date of Birth- " + day + month + year

 Output "Student type- " + studenType

EndProcedure

Low level algorithm for CourseWorkStudent class-

private Integer assignment1Mark

private Integer assignment2Mark

private Integer practicalMark

private Integer examMark

private Integer overallMark

private String finalGrade

Procedure CourseWorkStudent()

 super() // Must Invoke studentClassConstructor (base class)

 assignment1Mark = 0

 assignment2Mark = 0

 practicalMark = 0

 examMark = 0

 finalGrade = 'None'

EndProcedure

Procedure CourseWorkStudent(String initalTitle, String initialFirstName, String

initialLastName, Long initialStudentNum, Integer initialDay, Integer initialMonth, Integer

initialYear, String initialStudentType, Integer initialAssignment1Mark, Integer

initialAssignment2Mark, Integer initialPracticalMark, Integer initialExamMark, Integer

initialOverallMark, String initialFinalGrade)

 studentClassConstructor(initalTitle, initialFirstName, initialLastName,

initialStudentNum, initialDay, initialMonth, initialYear, initialStudentType) // Must Invoke

studentClassConstructor (base class)

 assignment1Mark = initialAssignment1Mark

 assignment2Mark = initialAssignment2Mark

 practicalMark = initialPracticalMark

 examMark = initialExamMark

 overallMark = initialOverallMark

 finalGrade = initialFinalGrade

EndProcedure

Procedure void SetAssignment1Mark(Integer newAssignment1Mark)

 if(newAssignment1Mark >= 0 AND newAssignment1Mark <= 100) then

 assignment1Mark = newAssignment1Mark

 else

 Output "Error: Invalid assignment 1 mark for student"

 EndIf

EndProcedure

Procedure void SetAssignment2Mark(Integer newAssignment2Mark)

 if(newAssignment2Mark >= 0 AND newAssignment2Mark <= 100) then

 assignment2Mark = newAssignment2Mark

 else

 Output "Error: Invalid assignment 2 mark for student"

 EndIf

EndProcedure

Procedure void SetPracticalMark(Integer newPracticalMark)

 if(newPracticalMark >= 0 AND newPracticalMark <= 20) then

 practicalMark = newPracticalMark

 else

 Output "Error: Invalid practical mark for student"

 EndIf

EndProcedure

Procedure void SetExamMark(Integer newExamMark)

 if(newExamMark >= 0 AND newExamMark <= 100) then

 examMark = newExamMark

 else

 Output "Error: Invalid exam mark for student"

 EndIf

EndProcedure

Procedure void SetFinalGrade(String newFinalGrade)

 if(newFinalGrade == "HD" OR newFinalGrade == "D" OR newFinalGrade == "C" OR

newFinalGrade == "P" OR newFinalGrade == "N") then

 finalGrade = newFinalGrade

 else

 Output "Error: Invalid final grade for student"

 EndIF

EndProcedure

Procedure Integer GetAssignment1Mark

 return assignment1Mark

EndProcedure

Procedure Integer GetAssignment2Mark

 return Assignment2Mark

EndProcedure

Procedure Integer GetPracticalMark

 return practicalMark

EndProcedure

Procedure Integer GetExamMark

 return examMark

EndProcedure

Procedure Integer CalculateCwMark()

 Double weightedAssignment1Mark = (double) assignment1Mark/100 * 25

 Double weightedAssignment2Mark = (double) assignment2Mark/100 * 25

 Double weightedPracticalMark = (double) practicalMark/20 * 20

 Double weightedExamMark = (double) examMark/100 * 30

 overallMark = (integer) (weightedAssignment1Mark + weightedAssignment2Mark +

weightedPracticalMark + weightedExamMark)

 Double decimalInput = (weightedAssignment1Mark + weightedAssignment2Mark +

weightedPracticalMark + weightedExamMark) - overallMark;

 if(decimalInput < 0.5) then

 return overallMark

 else

 Double decNumToRoundUp = 1 - decimalInput;

 overallMark = (integer) ((weightedAssignment1Mark + weightedAssignment2Mark +

weightedPracticalMark + weightedExamMark) + decNumToRoundUp)

 return overallMark

 EndIF

EndProcedure

Procedure void WriteRecord()

 Output "Title- " + GetTitle()

 Output "Name- " + GetFirstName() + GetLastName()

 Output "studentNum- " + GetStudentNum()

 Output "Date of Birth- " + GetDay() + GetMonth() + GetYear()

 Output "Student type- " + GetStudentType()

 Output "assignment 1 mark- " + assignment1Mark

 Output "assignment 2 mark- " + assignment2Mark

 Output "practical work mark- " + practicalMark

 Output "exam mark- " + examMark

 Output "overall mark- " + overallMark

 Output "final grade- " + finalGrade

EndProcedure

Low level algorithm for ResearchStudent class-

private Integer proposalMark

private Integer oralPresenationMark

private Integer thesisMark

private Integer overallMark

private String finalGrade

Procedure ResearchStudent()

 super()

 proposalMark = 0

 oralPresenationMark = 0

 thesisMark = 0

 overallMark = 0

 finalGrade = 'None'

EndProcedure

Procedure ResearchStudent(String initalTitle, String initialFirstName, String initialLastName,

Long initialStudentNum, Integer initialDay, Integer initialMonth, Integer initialYear, String

initialStudentType, Integer initialProposalMark, Integer initialOralPresenationMark, Integer

initialThesisMark, Integer initialOverallMark, String initialFinalGrade)

 super(initalTitle, initialFirstName, initialLastName, initialStudentNum, initialDay,

initialMonth, initialYear, initialStudentType)

 proposalMark = initialProposalMark

 oralPresenationMark = initialOralPresenationMark

 thesisMark = initialThesisMark

 overallMark = initialOverallMark

 finalGrade = initialFinalGrade

EndProcedure

Procedure void SetProposalMark(Integer newProposalMark)

 if(newProposalMark >= 0 AND newProposalMark <= 100) then

 proposalMark = newProposalMark

 else

 Output "Error: Invalid proposal mark for student"

 EndIf

EndProcedure

Procedure void SetOralPresenationMark(Integer newOralPresenationMark)

 if(newOralPresenationMark >= 0 AND newOralPresenationMark <= 20) then

 oralPresenationMark = newOralPresenationMark

 else

 Output "Error: Invalid oral presenation mark for student"

 EndIf

EndProcedure

Procedure void SetThesisMark(Integer newThesisMark)

 if(newThesisMark >= 0 AND newThesisMark <= 100) then

 thesisMark = newThesisMark

 else

 Output "Error: Invalid thesis mark for student"

 EndIf

EndProcedure

Procedure void SetFinalGrade(String newFinalGrade)

 if(newFinalGrade == "HD" OR newFinalGrade == "D" OR newFinalGrade == "C" OR

newFinalGrade == "P" OR newFinalGrade == "N") then

 finalGrade = newFinalGrade

 else

 Output "Error: Invalid final grade for student"

 EndIF

EndProcedure

Procedure Integer GetProposalMark

 return proposalMark

EndProcedure

Procedure Integer GetOralPresenationMark

 return oralPresenationMark

EndProcedure

Procedure Integer GetThesisMark

 return thesisMark

EndProcedure

Procedure Integer CalculateRsMark()

 Double weightedProposalMark = (Double) proposalMark/100 * 30

 Double weightedOralPresenationMark = (Double) oralPresenationMark/20 * 10

 Double weightedThesisMark = (Double) thesisMark/100 * 60

 overallMark = (integer) (weightedProposalMark + weightedOralPresenationMark +

weightedThesisMark)

 Double decimalInput = (weightedProposalMark + weightedOralPresenationMark +

weightedThesisMark) - overallMark;

 if(decimalInput < 0.5) then

 return overallMark

 else

 Double decNumToRoundUp = 1 - decimalInput;

 overallMark = (integer) ((weightedProposalMark + weightedOralPresenationMark +

weightedThesisMark) + decNumToRoundUp)

 return overallMark

 EndIF

EndProcedure

Procedure void WriteRecord()

 Output "Title- " + GetTitle()

 Output "Name- " + GetFirstName() + GetLastName()

 Output "studentNum- " + GetStudentNum()

 Output "Date of Birth- " + GetDay() + GetMonth() + GetYear()

 Output "Student type- " + GetStudentType()

 Output "Proposal mark- " + proposalMark

 Output "Oral presenation mark- " + oralPresenationMark

 Output "Thesis mark- " + thesisMark

 Output "Overall mark- " + overallMark

 Output "final grade- " + finalGrade

EndProcedure

Limitations

One shortfall of my program is the way in which the CSV file is outputted. In my output CSV file, I had

to use assessment 1, assessment 2, and assessment 3 to identify the different assessments. The

disadvantage of this method is that it is hard to identify which assessment is which. The advantage

of this method is that the method is adaptable to many different assessments and places which is

why I did it this way.

Another shortfall with my program is that it doesn’t validate the student.txt input well. I had to

make the assumption that the student.txt input was of the correct type. For example, the student ID

is a number and not a word is an assumption I made. The reason why student.txt isn’t validated well

is because I used the method .next() to get input from student.txt. Therefore, due to the limitations

of that method the student.txt input will always be a string. So without the assumption that

student.txt will be of the correct type, a student ID as a word would be possible.

Testing

Testing has been divided into several parts. A driver program has been utilised for every part to

show that every method works correctly. The following parts are tested- student (base class),

courseworkStudent (sub class), researchStudent (sub class) and finally client program. The inputs

come from student.txt and sometimes the client. For the client program I’ve tested each option

Test Table: Student class

Test # Test description Inputs Expected outputs Success/Failure

1 Enters title of student,

first name, last name,

student number, date

of birth and student

type correctly in order

on one line

Mr Jin Chong 33170193

10/2/2004

CourseWorkStudent

Title- Mr

Name- Jin Chong

Student Number-

33170193

Date of Birth-

10/2/2004

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

Success

2 Enters date of birth

incorrectly with day out

of range for the month

Dr Jin Bloggs 33170193

33/2/2004

reseArchStudenT

Invalid day for student.

Therefore, date of birth

for student not set

invalid information for

student. Therefore, the

program will not save

the student information

Success

3 Enters date of birth

incorrectly with month

out of range for a year

Mr Seymor Skinner

36945 20/13/2004

CourseWorkStudent

Invalid month entered.

Therefore, date of birth

for student not set

invalid information for

student. Therefore, the

program will not save

the student information

Success

4 Enters date of birth

incorrectly with year

outside the accepted

range (so before year

2000)

Miss Hilder Chan

238294 4/2/1999

CourseWorkStudent

Invalid year entered for

student. Therefore,

date of birth for student

not set

invalid information for

student. Therefore, the

program will not save

the student information

Success

5 Enter date of birth

incorrectly with day,

month, and year

outside the valid range

Mr Roman Lewis

101818 32/13/1000

CourseWorkStudent

Invalid month entered.

Therefore, date of birth

for student not set

Success

invalid information for

student. Therefore, the

program will not save

the student information

6 Enter research student

type in different cases

Miss Kava Dickson

20202 16/11/2030

REsEarChStudent

Title- Miss

Name- Kava Dickson

Student Number- 20202

Date of Birth-

16/11/2030

Student type-

ResearchStudent

Proposal mark- 0

Oral presenation mark-

0

Thesis mark- 0

overall mark- 0

overall mark- None

Success

7 Enter coursework

student type in

different cases

Dr Tom Mcdonald

04011 16/11/2015

CoURsEWorKStudent

Title- Dr

Name- Tom Mcdonald

Student Number-

04011

Date of Birth-

16/11/2015

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

Success

8 Enter student type

incorrectly so not

courseworkstudent or

researchstudent

Dr Brett Oneil 30133

32/5/2004 sess

Incorrect student type

specified for student

invalid information for

student. Therefore, the

program will not save

the student information

Success

9 Enter two student

objects with same

names and same date

of birth and name in

different cases

Mr PEPpa Dom 2468

12/2/2009

ResearchStudent

Dr PEppA DOm 9119

12/2/2009

CoURsEWorKStudent

Same name and DOB Success

10 Enter two student

objects without same

name but same date of

birth

Dr PEppA DOm 9119

12/2/2009

CoURsEWorKStudent

Dr Meg Tom 2048

12/2/2009

CoURsEWorKStudent

No not equal Success

11 Enter two student with

same name but without

same date of birth

Dr Meg Tom 2048

12/2/2009

CoURsEWorKStudent

Dr Meg Tom 4981

14/8/2010

CoURsEWorKStudent

No not equal Success

 Result of programing testing

TestCase 1:

--

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

TestCase 2:

Error: Invalid day for student. Therefore, date of birth for student not set

Error: Invalid information for student 2. Therefore, the program will not save the student information

TestCase 3:

Error: Invalid month entered. Therefore, date of birth for student not set

Error: Invalid information for student 3. Therefore, the program will not save the student information

TestCase 4:

Error: Invalid year entered for student. Therefore, date of birth for student not set

Error: Invalid information for student 4. Therefore, the program will not save the student information

TestCase 5:

Error: Invalid month entered. Therefore, date of birth for student not set

Error: Invalid information for student 5. Therefore, the program will not save the student information

TestCase 6:

--

Title- Miss

Name- Kava Dickson

Student Number- 20202

Date of Birth- 16/11/2030

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

--

TestCase 7:

--

Title- Dr

Name- Tom Mcdonald

Student Number- 4011

Date of Birth- 16/11/2015

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

TestCase 8:

Error: Incorrect student type specified for student

Error: Invalid information for student 12. Therefore, the program will not save the student information

TestCase 9:

Same name and DOB

TestCase 10:

No not equal

TestCase 11:

No not equal

Test Table: ResearchStudent class

Test # Test description Inputs Expected outputs Success/Failure

1 Enter maximum range

number for

proposalMark,

oralPresenationMark

and thesisMark

636334

636334 100 20 100

Title- Miss

Name- Tom Rox

Student Number-

636334

Date of Birth-

6/11/2030

Student type-

ResearchStudent

Proposal mark- 100

Oral presenation mark-

20

Thesis mark- 100

overall mark- 100

overall mark- HD

Success

2 Enter minimum range

for proposalMark,

oralPresenationMark

and thesisMark

20202

20202 0 0 0

Title- Miss

Name- Kava Dickson

Student Number- 20202

Date of Birth-

16/11/2030

Student type-

ResearchStudent

Proposal mark- 0

Oral presenation mark-

0

Thesis mark- 0

overall mark- 0

overall mark- N

Success

3 Enter proposalMark and

oralPresenationMark

above acceptable range

2468

2468 101 21 10

Invalid proposal mark

for student

Invalid oral presenation

mark for student

Title- Mr

Name- PEPpa Dom

Student Number- 2468

Date of Birth-

12/2/2009

Student type-

ResearchStudent

Proposal mark- 0

Oral presenation mark-

0

Thesis mark- 10

overall mark- 6

overall mark- N

Success

4 Enter proposalMark,

oralPresenationMark

and thesisMark below

acceptable range

59822

59822 -1 -1 -100

Invalid proposal mark

for student

Invalid oral presenation

mark for student

Invalid thesis mark for

student

Title- Mr

Name- Raphel Nadal

Student Number- 59822

Date of Birth-

20/12/2005

Student type-

ResearchStudent

Proposal mark- 0

Oral presenation mark-

0

Success

Thesis mark- 0

overall mark- 0

overall mark- N

Result of programing testing

TestCase 1:

Enter a student: 636334

--

Title- Miss

Name- Tom Rox

Student Number- 636334

Date of Birth- 6/11/2030

Student type- ResearchStudent

Proposal mark- 100

Oral presenation mark- 20

Thesis mark- 100

overall mark- 100

overall mark- HD

--

TestCase 2:

Enter a student: 20202

--

Title- Miss

Name- Kava Dickson

Student Number- 20202

Date of Birth- 16/11/2030

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- N

--

TestCase 3:

Enter a student: 2468

Error: Invalid proposal mark for student

Error: Invalid oral presenation mark for student

--

Title- Mr

Name- PEPpa Dom

Student Number- 2468

Date of Birth- 12/2/2009

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 15

Thesis mark- 10

overall mark- 14

overall mark- N

--

TestCase 4:

Enter a student: 59822

Error: Invalid proposal mark for student

Error: Invalid oral presenation mark for student

Error: Invalid thesis mark for student

--

Title- Mr

Name- Raphel Nadal

Student Number- 59822

Date of Birth- 20/12/2005

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- N

--

Test Table: CourseWorkStudent class

Test # Test description Inputs Expected outputs Success/Failure

1 Enter maximum range

number for

assignment1Mark,

assignment2Mark,

practicalMark and

examMark

12345 100 100 20 100 Title- Miss

Name- Tom Rox

Student Number- 12345

Date of Birth- 1/4/2020

Student type-

CourseWorkStudent

assignment 1 mark- 100

assignment 2 mark- 100

practical work mark- 20

exam mark- 100

overall mark- 100

overall mark- HD

Success

2 Enter maximum range

number for

assignment1Mark,

assignment2Mark,

practicalMark and

examMark

1225 0 0 0 0 Title- Dr

Name- Tom Mcdonald

Student Number- 4011

Date of Birth-

16/11/2015

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

Success

3 Enter

assignment1Mark,

assignment2Mark,

practicalMark and

examMark above

acceptable range

9119 101 101 21 101 Invalid assignment 1

mark for student

Invalid assignment 2

mark for student

Invalid practical mark

for student

Invalid exam mark for

student

Title- Dr

Name- PEppA DOm

Student Number- 9119

Date of Birth-

12/2/2009

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

Success

4 Enter

assignment1Mark,

assignment2Mark,

practicalMark and

examMark below

acceptable range

4981 -1 -1 -1 -1 Invalid assignment 1

mark for student

Invalid assignment 2

mark for student

Invalid practical mark

for student

Invalid exam mark for

student

Success

Title- Dr

Name- Meg Tom

Student Number- 4981

Date of Birth-

14/8/2010

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

Result of programing testing

TestCase 1:

Enter a student: 12345

--

Title- Miss

Name- Tom Rox

Student Number- 12345

Date of Birth- 1/4/2020

Student type- CourseWorkStudent

assignment 1 mark- 100

assignment 2 mark- 100

practical work mark- 20

exam mark- 100

overall mark- 100

overall mark- HD

--

TestCase 2:

Enter a student: 4011

--

Title- Dr

Name- Tom Mcdonald

Student Number- 4011

Date of Birth- 16/11/2015

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

TestCase 3:

Enter a student: 9119

Error: Invalid assignment 1 mark for student

Error: Invalid assignment 2 mark for student

Error: Invalid practical mark for student

Error: Invalid exam mark for student

--

Title- Dr

Name- PEppA DOm

Student Number- 9119

Date of Birth- 12/2/2009

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

TestCase 4:

Enter a student: 4981

Error: Invalid assignment 1 mark for student

Error: Invalid assignment 2 mark for student

Error: Invalid practical mark for student

Error: Invalid exam mark for student

--

Title- Dr

Name- Meg Tom

Student Number- 4981

Date of Birth- 14/8/2010

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

Test Table: Client program

Test # Test description Inputs Expected outputs Success/Failure

1 Client states they are

dealing with research

students by entering

lowercase r

Client select option 1

r

1

Farewell! Exit menu Success

2 Client states they are

dealing with

coursework students by

entering lowercase c.

Client select out of

range (invalid) option

c

11

Invalid option!

Enter an option:
Success

Result of programing testing

TestCase 1:

Type C if you're dealing with coursework students OR R if you are dealing with reseach students

r

--

Enter an option: 1

Farewell! Exit menu

TestCase 2:

Type C if you're dealing with coursework students OR R if you are dealing with reseach students

c

--

Enter an option: 11

Invalid option!

Enter an option:

Test Table: Client program – Option 2 (Add all marks information about a coursework or research

student)

NOTE: option 5 often used to show the effects

Test # Test description Inputs Expected outputs Success/Failure

1 Client states they are

dealing with research

students

Add proposalMark,

oralPresenationMark

and thesisMark that is

out of range out for a

student

Mr Raphel Nadal 59822

20/12/2005

REsEarChStudent

59822 -1 -1 -100

r

2

5

Invalid proposal mark

for student

Invalid oral presenation

mark for student

Invalid thesis mark for

student

Title- Mr

Name- Raphel Nadal

Student Number- 59822

Date of Birth-

20/12/2005

Student type-

ResearchStudent

Proposal mark- 0

Oral presenation mark-

0

Thesis mark- 0

overall mark- 0

overall mark- N

Success

2 Client states they are

dealing with

coursework students

Add assignment1Mark,

assignment2Mark,

practicalMark and

examMark that is out of

range for a student

Dr PEppA DOm 9119

12/2/2009

CoURsEWorKStudent

9119 101 101 21 101

C

2

5

Invalid assignment 1

mark for student

Invalid assignment 2

mark for student

Invalid practical mark

for student

Invalid exam mark for

student

Title- Dr

Name- PEppA DOm

Student Number- 9119

Date of Birth-

12/2/2009

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

Success

3 Client states they are

dealing with research

students

Add proposalMark,

oralPresenationMark

and thesisMark for a

student that doesn’t
exist

22222 50 10 50

R

2

student 22222 can't be

found in arrayList
Success

Result of programing testing

TestCase 1:

Type C if you're dealing with coursework students OR R if you are dealing with research students

r

--

Enter an option: 2

Error: Invalid proposal mark for student

Error: Invalid oral presenation mark for student

Error: Invalid proposal mark for student

Error: Invalid oral presenation mark for student

Error: Invalid thesis mark for student

Enter an option: 5

--

Title- Mr

Name- Raphel Nadal

Student Number- 59822

Date of Birth- 20/12/2005

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- N

--

TestCase 2:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 2

Error: Invalid assignment 1 mark for student

Error: Invalid assignment 1 mark for student

Error: Invalid assignment 2 mark for student

Error: Invalid practical mark for student

Error: Invalid exam mark for student

Error: Invalid assignment 1 mark for student

Error: Invalid assignment 2 mark for student

Error: Invalid practical mark for student

Error: Invalid exam mark for student

Enter an option: 5

--

Title- Dr

Name- PEppA DOm

Student Number- 9119

Date of Birth- 12/2/2009

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

TestCase 3:

Type C if you're dealing with coursework students OR R if you are dealing with research students

r

--

Enter an option: 2

Exception: student 22222 can't be found in arrayList

Enter an option:

Test Table: Client program – Option 3 (Remove student from arrayList from student number)

NOTE: option 5 is often used to show the effects

Test # Test description Inputs Expected outputs Success/Failure

1 Client states they are

dealing with research

students

Remove student that

doesn’t have mark

information set

R

5

3

62315

y

5

Enter the student

number identifying the

student you wish to

delete:

Are you sure you want

to remove Rob Potter

Student ID- 62315

(Y/N)?

Success

2 Client states they are

dealing with

courseworkstudents

students

Remove student that

has mark information

set

C

2

5

3

33170193

Yep

5

Enter the student

number identifying the

student you wish to

delete:

Are you sure you want

to remove Jin Chong

Student ID- 33170193

(Y/N)?

Success

3 Client states they are

dealing with research

students

Remove student that

doesn’t exist

R

3

222222

Student number

entered does not exist
Success

4 Client states they are

dealing with

courseworkstudents

students

Remove a student but

don’t confirm

C

3

33170193

Nope

Student not removed Success

5 Client states they are

dealing with

courseworkstudents

students

Remove a student but

confirmation input is

not character Y or N

C

3

33170193

z

Student not removed Success

Result of programing testing

TestCase 1:

Type C if you're dealing with coursework students OR R if you are dealing with research students

R

--

Enter an option: 5

Title- Doc

Name- Rob Potter

Student Number- 62315

Date of Birth- 4/3/2000

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- N

--

Enter an option: 3

Enter the student number identifying the student you wish to delete:

62315

Are you sure you want to remove Rob Potter Student ID- 62315 (Y/N)?

Y

Enter an option: 5

Title- Mr

Name- Buck tanner

Student Number- 101746

Date of Birth- 10/5/2030

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- N

--

TestCase 2:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 2

Enter an option: 5

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 60

practical work mark- 14

exam mark- 50

overall mark- 44

overall mark- N

--

Enter an option: 3

Enter the student number identifying the student you wish to delete:

33170193

Are you sure you want to remove Jin Chong Student ID- 33170193 (Y/N)?

Yep

Enter an option: 5

Title- Miss

Name- Tom Rox

Student Number- 12345

Date of Birth- 1/4/2020

Student type- CourseWorkStudent

assignment 1 mark- 100

assignment 2 mark- 100

practical work mark- 20

exam mark- 100

overall mark- 100

overall mark- HD

--

TestCase 3:

Type C if you're dealing with coursework students OR R if you are dealing with research students

r

--

Enter an option: 3

Enter the student number identifying the student you wish to delete:

222222

Student number entered does not exist

Enter an option:

TestCase 4:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 3

Enter the student number identifying the student you wish to delete:

33170193

Are you sure you want to remove Jin Chong Student ID- 33170193 (Y/N)?

no

Student not removed

Enter an option:

TestCase 5:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 3

Enter the student number identifying the student you wish to delete:

33170193

Are you sure you want to remove Jin Chong Student ID- 33170193 (Y/N)?

zz

Student not removed

Enter an option:

Test Table: Client program – Option 4 and Option 5

Key: … means there are more students outputted.

Test # Test description Inputs Expected outputs Success/Failure

1 Client states they are

dealing with

coursework students

Client selects option 5

with all valid mark

information for all

existing coursework

students added

C

2

5

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 60

practical work mark- 14

exam mark- 50

overall mark- 44

overall mark- N

…

Title- Dr

Name- Meg Tom

Student Number- 4981

Date of Birth- 14/8/2010

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

Success

 Client states they are

dealing with

coursework students

Client selects option 5

with no mark

information added to

coursework students

C

5

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

…

Title- Dr

Name- Meg Tom

Student Number- 4981

Date of Birth- 14/8/2010

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

Success

3 Client states they are

dealing with

coursework students

Client selects option 4

with no mark

information added to

any coursework

students

C

4

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

…

Title- Mr

Name- Rustle Ton

Student Number- 3102742

Date of Birth- 21/3/2004

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

Success

4 Client states they are

dealing with research

students

C

2

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type-

Success

Client selects option 4

with mark information

added to research

students

4 CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

…

Title- Mr

Name- Rustle Ton

Student Number- 3102742

Date of Birth- 21/3/2004

Student type- ResearchStudent

Proposal mark- 50

Oral presenation mark- 10

Thesis mark- 50

overall mark- 50

overall mark- P

Result of programing testing

TestCase 1:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 2

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 60

practical work mark- 14

exam mark- 50

overall mark- 44

overall mark- N

--

Title- Miss

Name- Tom Rox

Student Number- 12345

Date of Birth- 1/4/2020

Student type- CourseWorkStudent

assignment 1 mark- 100

assignment 2 mark- 100

practical work mark- 20

exam mark- 100

overall mark- 100

overall mark- HD

--

Title- Dr

Name- Tom Mcdonald

Student Number- 4011

Date of Birth- 16/11/2015

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

Title- Dr

Name- PEppA DOm

Student Number- 9119

Date of Birth- 12/2/2009

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

Title- Dr

Name- Meg Tom

Student Number- 4981

Date of Birth- 14/8/2010

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

Enter an option:

TestCase 2:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 5

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

Title- Miss

Name- Tom Rox

Student Number- 12345

Date of Birth- 1/4/2020

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

Title- Dr

Name- Tom Mcdonald

Student Number- 4011

Date of Birth- 16/11/2015

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

Title- Dr

Name- PEppA DOm

Student Number- 9119

Date of Birth- 12/2/2009

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

Title- Dr

Name- Meg Tom

Student Number- 4981

Date of Birth- 14/8/2010

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- N

--

Enter an option:

TestCase 3:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 4

--

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

Title- Miss

Name- Tom Rox

Student Number- 12345

Date of Birth- 1/4/2020

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

Title- Doc

Name- Rob Potter

Student Number- 62315

Date of Birth- 4/3/2000

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

--

Title- Mr

Name- Buck tanner

Student Number- 101746

Date of Birth- 10/5/2030

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

--

Title- Miss

Name- Tom Rox

Student Number- 636334

Date of Birth- 6/11/2030

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

--

Title- Miss

Name- Kava Dickson

Student Number- 20202

Date of Birth- 16/11/2030

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

--

Title- Dr

Name- Tom Mcdonald

Student Number- 4011

Date of Birth- 16/11/2015

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

Title- Mr

Name- PEPpa Dom

Student Number- 2468

Date of Birth- 12/2/2009

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

--

Title- Dr

Name- PEppA DOm

Student Number- 9119

Date of Birth- 12/2/2009

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

Title- Dr

Name- Meg Tom

Student Number- 2048

Date of Birth- 12/2/2009

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

Title- Dr

Name- Meg Tom

Student Number- 4981

Date of Birth- 14/8/2010

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

Title- Mr

Name- Raphel Nadal

Student Number- 59822

Date of Birth- 20/12/2005

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

--

Title- Mr

Name- Rustle Ton

Student Number- 3102742

Date of Birth- 21/3/2004

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

Enter an option:

[More to it]

Enter a student: 3102742

--

Title- Mr

Name- Rustle Ton

Student Number- 3102742

Date of Birth- 21/3/2004

Student type- ResearchStudent

Proposal mark- 50

Oral presenation mark- 10

Thesis mark- 50

overall mark- 50

overall mark- P

--

TestCase 4:

Type C if you're dealing with coursework students OR R if you are dealing with research students

r

--

Enter an option: 2

Enter an option: 4

--

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

…

--

Title- Mr

Name- Rustle Ton

Student Number- 3102742

Date of Birth- 21/3/2004

Student type- ResearchStudent

Proposal mark- 50

Oral presenation mark- 10

Thesis mark- 50

overall mark- 50

overall mark- P

Enter an option:

Test Table: Client program – Option 6

Key: … means there are more students outputted.

NOTE: Client must select option 2 prior to using option 6

Test # Test description Inputs Expected outputs Success/Failure

1 Client states they are

dealing with

coursework students

Selects option 6

C

2

6

Number of students

above average- 2

Number of students

below average- 4

Success

2 Client states they are

dealing with

coursework students

Selects option 6

R

2

6

Number of students

above average- 4

Number of students

below average- 3

Success

Result of programing testing

TestCase 1:

Type C if you're dealing with coursework students OR R if you are dealing with research students

C

--

Enter an option: 6

Number of students above average- 2

Number of students below average- 4

TestCase 2:

Type C if you're dealing with coursework students OR R if you are dealing with research students

R

--

Enter an option: 6

Number of students above average- 4

Number of students below average- 3

Test Table: Client program – Option 7 and option 8

Key: … means there are more students outputted.

Test # Test description Inputs Expected outputs Success/Failure

1 Client enter existing

number for

courseWorkstudent

C

7

33170193

Title- Mr

Name- Jin Chong

Student Number-

33170193

Date of Birth-

10/2/2004

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

Success

2 Client enter existing

number for

ResearchStudent

C

7

62315

62315

Title- Doc

Name- Rob Potter

Student Number- 62315

Date of Birth- 4/3/2000

Student type-

ResearchStudent

Proposal mark- 0

Oral presenation mark-

0

Thesis mark- 0

overall mark- 0

overall mark- None

Success

3 Client enters student

number not found

R

7

11

Student not found

Success

4 Client enters existing

given name and

surname, case

insensitive

R

8

JiN

CHoNG

Title- Mr

Name- Jin Chong

Student Number-

33170193

Date of Birth-

10/2/2004

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

Success

5 Multiple students

having the same name

C

8

meg

ToM

Title- Dr

Name- Meg Tom

Student Number- 2048

Date of Birth-

12/2/2009

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

Success

Title- Dr

Name- Meg Tom

Student Number- 4981

Date of Birth-

14/8/2010

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

6 Client enters student

name not found

R

8

Taylor

Nick

Student not found in

arrayList
Success

Result of programing testing

TestCase 1:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 7

Enter a student number:

33170193

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

Enter an option:

TestCase 2:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 7

Enter a student number:

62315

Title- Doc

Name- Rob Potter

Student Number- 62315

Date of Birth- 4/3/2000

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

--

Enter an option:

TestCase 3:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 7

Enter a student number:

11

Student not found

--

Enter an option:

TestCase 4:

Type C if you're dealing with coursework students OR R if you are dealing with research students

r

--

Enter an option: 8

Enter first name of student:

JiN

Enter last name of student

CHoNG

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

Enter an option:

TestCase 5:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 8

Enter first name of student:

meg

Enter last name of student

ToM

Title- Dr

Name- Meg Tom

Student Number- 2048

Date of Birth- 12/2/2009

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

Title- Dr

Name- Meg Tom

Student Number- 4981

Date of Birth- 14/8/2010

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

Enter an option:

TestCase 6:

Type C if you're dealing with coursework students OR R if you are dealing with research students

R

--

Enter an option: 8

Enter first name of student:

Taylor

Enter last name of student

Nick

Student not found in arrayList

Enter an option:

Test Table: Client program – Option 9 and 10

Key: … means there are more students outputted.

Test # Test description Inputs Expected outputs Success/Failure

1 Sort arrayList into

ascending order of

student ID and output

c

9

Title- Dr

Name- Meg Tom

Student Number- 2048

Date of Birth-

12/2/2009

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

Title- Mr

Name- PEPpa Dom

Student Number- 2468

Date of Birth-

12/2/2009

Student type-

ResearchStudent

Proposal mark- 0

Oral presenation mark-

0

Thesis mark- 0

overall mark- 0

overall mark- None

…

Title- Mr

Name- Rustle Ton

Student Number-

3102742

Date of Birth-

21/3/2004

Student type-

ResearchStudent

Proposal mark- 0

Oral presenation mark-

0

Thesis mark- 0

overall mark- 0

overall mark- None

Title- Mr

Name- Jin Chong

Student Number-

33170193

Date of Birth-

10/2/2004

Student type-

CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

Success

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

2 Output sorted arrayList.

Client forget to sort or

select option 9.

Therefore, program will

also do option 9

R

10

Finished writing to file
Success

Result of programing testing

TestCase 1:

Type C if you're dealing with coursework students OR R if you are dealing with research students

c

--

Enter an option: 9

--

Title- Dr

Name- Meg Tom

Student Number- 2048

Date of Birth- 12/2/2009

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

--

Title- Mr

Name- PEPpa Dom

Student Number- 2468

Date of Birth- 12/2/2009

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

--

…

--

Title- Mr

Name- Rustle Ton

Student Number- 3102742

Date of Birth- 21/3/2004

Student type- ResearchStudent

Proposal mark- 0

Oral presenation mark- 0

Thesis mark- 0

overall mark- 0

overall mark- None

--

Title- Mr

Name- Jin Chong

Student Number- 33170193

Date of Birth- 10/2/2004

Student type- CourseWorkStudent

assignment 1 mark- 0

assignment 2 mark- 0

practical work mark- 0

exam mark- 0

overall mark- 0

overall mark- None

Enter an option:

TestCase 2:

Type C if you're dealing with coursework students OR R if you are dealing with research students

R

--

Enter an option: 2

…

Enter an option: 10

Finished writing to file

Enter an option:

Source program listing

Java source code for client program (Client.java)-

/*

 * Student Marks and Information Tracker

 * By: Jin Cherng Chong

 * 23/10/2020

 * Files: Client.java, Student.java (base class), CourseWorkStudent.java(subclass name), ResearchStudent.java (subclass name),

 * CourseWorkStudentMark.txt, researchStudentMark.txt and student.txt

 * This program keeps track of different types students at a university and their marks they obtain in a year for a generic unit

 *

*/

package ict167assignment2;

/**

 *

 * @author 33170193

 */

import java.util.*;

import java.io.*;

public class Client {

 public static void main(String[] args) {

 StudentInfo();

 int studentNo = 1;

 ArrayList<Student> studentList = new ArrayList<Student>(); //Create array list of students

 Scanner inputStream = null;

 char studentType = 'A';

 String typeOfStudent;

 studentType = GetTypeOfStudent();

 try {

 inputStream = new Scanner(new File("student.txt")); //Opens the student.txt which contains list of students

 } catch (FileNotFoundException e) {

 System.out.println("Error opening file");

 System.exit(0); //Exit program when student.txt can't be opened

 }

 while (inputStream.hasNext()) {

 Student student = null; //NOTE: Declared new student object outside if-statement so it can be accessed. Both object courseWorkStudent and

ResearchStudent ARE students

 Boolean invalidStudentInformation = true;

 String title = inputStream.next(); //Get the title, firstname, lastname and student number from student.txt

 String firstName = inputStream.next();

 String lastName = inputStream.next();

 long studentNum = Long.parseLong(inputStream.next());

 String DOB = inputStream.next(); //Get date of birth from student.txt

 String[] splitDOB = DOB.split("/");

 int day = Integer.parseInt(splitDOB[0]);

 int month = Integer.parseInt(splitDOB[1]);

 int year = Integer.parseInt(splitDOB[2]);

 typeOfStudent = inputStream.next(); //Get student type from student.txt

 if (typeOfStudent.equalsIgnoreCase("CourseWorkStudent")) {

 student = new CourseWorkStudent(); //NOTE: Why can I assign class: courseWorkStudent() to class: student? Because courseWorkStudent extends

student thus courseWorkStudent Is a Student

 } else if (typeOfStudent.equalsIgnoreCase("ResearchStudent")) {

 student = new ResearchStudent(); //NOTE: Why can't I declare inside if-statement i.e ResearchStudent student = new ResearchStudent();? Because

can't be accessed outside if-statement

 } else {

 System.out.printf("Error: Incorrect student type specified for student \n");

 }

 if (student != null) { //Validate whether CourseWorkStudent OR ResearchStudent has been created. A null means neither has been created

 student.SetTitle(title);

 student.SetFirstName(firstName);

 student.SetLastName(lastName);

 student.SetStudentNum(studentNum);

 student.SetDateOfBirth(day, month, year);

 student.SetStudentType(typeOfStudent);

 invalidStudentInformation = (student.GetTitle().equals("None") || student.GetFirstName().equals("None") || student.GetLastName().equals("None") ||

student.GetStudentNum() == 0 || student.GetDay() == 0 || student.GetMonth() == 0 || student.GetYear() == 0 || student.GetStudentType().equals("None"));

 }

 if (invalidStudentInformation) {

 System.out.printf("Error: Invalid information for student %d. Therefore, the program will not save the student information \n", studentNo);

 System.out.println();

 } else {

 studentList.add(student); //Add the student to array list

 }

 studentNo++; //Keep track new students in student.txt

 }

 inputStream.close();

 // studentList.get(1).WriteRecord();

 DspMenu(studentList, studentType);

 //Class Student checking??

 }

 public static char GetTypeOfStudent() { //Method that gets the studentType that client wants to work with

 Boolean invalidStudentType = true;

 char studentType = 'A';

 Scanner keyboard = new Scanner(System.in);

 do {

 System.out.println("Type C if you're dealing with coursework students OR R if you are dealing with research students");

 studentType = keyboard.nextLine().charAt(0); //Gets the character input

 studentType = Character.toUpperCase(studentType); //Always converts the character input to uppercase

 if (studentType == 'C' || studentType == 'R') { //Checks whether character input is one of the valid student types

 invalidStudentType = false;

 } else {

 System.out.println("Invalid option!");

 }

 } while (invalidStudentType); //Keeps looping if the student type entered is not valid

 System.out.println("--");

 return studentType;

 }

 public static void DspMenu(ArrayList<Student> studentList, char studentType) { //Method that displays a menu to the client

 int option = 0;

 ArrayList<Student> officalStudentList = studentList;

 Scanner keyboard = new Scanner(System.in);

 while (option != 1) { //Stops displaying the menu when the option entered is 1

 System.out.print("Enter an option: ");

 option = keyboard.nextInt();

 System.out.println();

 switch (option) {

 case 1:

 System.out.println("Farewell! Exit menu");

 break;

 case 2:

 officalStudentList = SelectOption2(officalStudentList, studentType);

 //officalStudentList.get(1).WriteRecord();

 break;

 case 3:

 officalStudentList = SelectOption3(officalStudentList);

 //officalStudentList.get(1).WriteRecord();

 break;

 case 4:

 SelectOption4(officalStudentList);

 break;

 case 5:

 officalStudentList = SelectOption5(officalStudentList, studentType);

 //officalStudentList.get(1).WriteRecord();

 break;

 case 6:

 SelectOption6(officalStudentList, studentType);

 break;

 case 7:

 SelectOption7(officalStudentList);

 break;

 case 8:

 SelectOption8(officalStudentList);

 break;

 case 9:

 officalStudentList = SelectOption9(officalStudentList);

 SelectOption4(officalStudentList); //Output sorted array

 break;

 case 10:

 officalStudentList = SelectOption9(officalStudentList); //Sort array just in case it hasn't been sorted yet

 SelectOption10(officalStudentList);

 break;

 default:

 System.out.println("Invalid option!");

 }

 }

 }

 public static ArrayList SelectOption2(ArrayList<Student> officalStudentList, char studentType) { //Method that adds all the marks for all the students of a

particular student type

 long studentNum = 0;

 long num = 0;

 int overallMark = 0;

 String overallGrade;

 Boolean studentNotInStudentList = true;

 Scanner inputStreamCw = null;

 Scanner inputStreamRs = null;

 try { //Open coursework mark txt file

 inputStreamCw = new Scanner(new File("courseWorkStudentMark.txt")); //Opens the student.txt which contains list of students

 } catch (FileNotFoundException e) {

 System.out.println("Error opening file");

 System.exit(0); //Exit program when courseWorkStudentMark.txt can't be opened

 }

 try { //Open researchstudent mark txt file

 inputStreamRs = new Scanner(new File("researchStudentMark.txt")); //Opens the student.txt which contains list of students

 } catch (FileNotFoundException e) {

 System.out.println("Error opening file");

 System.exit(0); //Exit program when researchStudentMark.txt can't be opened

 }

 while (inputStreamCw.hasNext() && studentType == 'C') { //Loop through coursework mark file

 studentNotInStudentList = true;

 num = Long.parseLong(inputStreamCw.next());

 try {

 for (Student person : officalStudentList) { //Loop through all the students in the student arrayList

 studentNum = person.GetStudentNum();

 if (num == studentNum) {

 CourseWorkStudent CourseWorkStudent = (CourseWorkStudent) person; //NOTE: Downcasting: Casting super class (Student) --> Sub class

(courseWorkStudent)

 int assignment1Mark = Integer.parseInt(inputStreamCw.next());

 CourseWorkStudent.SetAssignment1Mark(assignment1Mark);

 int assignment2Mark = Integer.parseInt(inputStreamCw.next());

 CourseWorkStudent.SetAssignment2Mark(assignment2Mark);

 int practicalMark = Integer.parseInt(inputStreamCw.next());

 CourseWorkStudent.SetPracticalMark(practicalMark);

 int examMark = Integer.parseInt(inputStreamCw.next());

 CourseWorkStudent.SetExamMark(examMark);

 overallMark = CourseWorkStudent.CalculateCwMark();

 overallGrade = CalculateOverallGrade(overallMark);

 CourseWorkStudent.SetFinalGrade(overallGrade);

 studentNotInStudentList = false;

 }

 }

 if (studentNotInStudentList) {

 throw new Exception();

 }

 } catch (Exception e) {

 System.out.printf("Exception: student %d can't be found in arrayList \n", num);

 }

 inputStreamCw.nextLine(); //NOTE: Why did I include nextLine when I'm checking hasNext right away? Because hasNext doesn't go to the new line. It

goes to the next word

 }

 while (inputStreamRs.hasNext() && studentType == 'R') { //Loop through research student mark file

 studentNotInStudentList = true;

 num = Long.parseLong(inputStreamRs.next());

 try {

 for (Student person : officalStudentList) { //Loop through all the object in arrayList (officalStudentList)

 studentNum = person.GetStudentNum();

 if (num == studentNum) {

 ResearchStudent ResearchStudent = (ResearchStudent) person; //NOTE: Downcasting: Casting super class (Student) --> Sub class (research

student)

 int proposalMark = Integer.parseInt(inputStreamRs.next());

 ResearchStudent.SetProposalMark(proposalMark);

 int oralPresenationMark = Integer.parseInt(inputStreamRs.next());

 ResearchStudent.SetOralPresenationMark(oralPresenationMark);

 int thesisMark = Integer.parseInt(inputStreamRs.next());

 ResearchStudent.SetThesisMark(thesisMark);

 overallMark = ResearchStudent.CalculateRsMark();

 overallGrade = CalculateOverallGrade(overallMark);

 ResearchStudent.SetFinalGrade(overallGrade);

 studentNotInStudentList = false;

 }

 }

 if (studentNotInStudentList) {

 throw new Exception();

 }

 } catch (Exception e) {

 System.out.printf("Exception: student %d can't be found in arrayList \n", num);

 }

 inputStreamRs.nextLine(); //NOTE: Why did I include nextLine when I'm checking hasNext right away? Because hasNext doesn't go to the new line. It

goes to the next word

 }

 inputStreamCw.close();

 inputStreamRs.close();

 return officalStudentList;

 }

 public static ArrayList SelectOption3(ArrayList<Student> officalStudentList) { //Method removes student from arrayList of students

 long clientNum = 0;

 long numOfStudent = 0;

 String firstNameOfStudent;

 String surnameOfStudent;

 char confirmation = 'N';

 Boolean studentNumExist = false;

 Scanner keyboard = new Scanner(System.in);

 Scanner keyboard2 = new Scanner(System.in);

 System.out.println("Enter the student number identifying the student you wish to delete: ");

 clientNum = keyboard.nextLong(); //Get the student number client want's to remove

 for (Student person : officalStudentList) { //Loop through all the students in the student arrayList

 firstNameOfStudent = person.GetFirstName();

 surnameOfStudent = person.GetLastName();

 numOfStudent = person.GetStudentNum();

 if (clientNum == numOfStudent) { //Check whether client entered student number matches current person actual student number

 System.out.printf("Are you sure you want to remove %s %s Student ID- %d (Y/N)? \n", firstNameOfStudent, surnameOfStudent, numOfStudent);

 confirmation = keyboard2.next().charAt(0); //This gets character from string

 confirmation = Character.toUpperCase(confirmation); //Converts all characters to uppercase for consistency

 studentNumExist = true;

 }

 if (confirmation == 'Y') { //Check whether client wants to actually delete

 officalStudentList.remove(person); //Remove person from arrayList (officalStudentList). Notice person is in for loop

 return officalStudentList;

 } else {

 System.out.println("Student not removed");

 return officalStudentList;

 }

 }

 if (!studentNumExist) {

 System.out.println("Student number entered does not exist");

 }

 return officalStudentList;

 }

 public static void SelectOption4(ArrayList<Student> officalStudentList) { ///Method that displays details of all students in the arrayList

 for (Student person : officalStudentList) { //Loops through all the students in the student list

 System.out.println("--");

 person.WriteRecord(); //NOTE: WHY didn't I downcast? Because Polymorphism + overrriding. refer to lecture

 }

 }

 public static ArrayList SelectOption5(ArrayList<Student> officalStudentList, char studentType) { //Method that compute and output the overall mark +

grade for either coursework or research students

 int overallMark = 0;

 Scanner inputStreamCw = null;

 Scanner inputStreamRs = null;

 String overallGrade;

 long num = 0;

 long studentNum = 0;

 try {

 inputStreamCw = new Scanner(new File("courseWorkStudentMark.txt")); //Opens the student.txt which contains list of students

 } catch (FileNotFoundException e) {

 System.out.println("Error opening file");

 System.exit(0); //Exit program when courseWorkStudentMark.txt can't be opened

 }

 try {

 inputStreamRs = new Scanner(new File("researchStudentMark.txt")); //Opens the student.txt which contains list of students

 } catch (FileNotFoundException e) {

 System.out.println("Error opening file");

 System.exit(0); //Exit program when researchStudentMark.txt can't be opened

 }

 while (inputStreamCw.hasNext() && studentType == 'C') { //Goes through all the courseWorkStudentMark.txt file

 num = Long.parseLong(inputStreamCw.next());

 for (Student person : officalStudentList) { //Loop through all the student's object in the arrayList

 studentNum = person.GetStudentNum();

 if (num == studentNum) { //When student number = current person number then set

 CourseWorkStudent CourseWorkStudent = (CourseWorkStudent) person; //NOTE: Downcasting: Casting super class (Student) --> Sub class

 overallMark = CourseWorkStudent.CalculateCwMark(); //Calculate overall coursework mark

 overallGrade = CalculateOverallGrade(overallMark); //Calculate overall grade

 CourseWorkStudent.SetFinalGrade(overallGrade); //store grade

 CourseWorkStudent.WriteRecord();

 System.out.println("--");

 }

 }

 inputStreamCw.nextLine(); //NOTE: Why did I include nextLine when I'm checking hasNext right away? Because hasNext doesn't go to the new line. It

goes to the next word

 }

 while (inputStreamRs.hasNext() && studentType == 'R') { //Goes through all the researchStudent.txt file

 num = Long.parseLong(inputStreamRs.next());

 for (Student person : officalStudentList) { //Loop through all the student's object in the arrayList

 studentNum = person.GetStudentNum();

 if (num == studentNum) { //When student number = current person number then set

 ResearchStudent ResearchStudent = (ResearchStudent) person; //NOTE: Downcasting: Casting super class (Student) --> Sub class

 overallMark = ResearchStudent.CalculateRsMark(); //Calculate overall coursework mark

 overallGrade = CalculateOverallGrade(overallMark); //Calculate overall grade

 ResearchStudent.SetFinalGrade(overallGrade); //store grade

 ResearchStudent.WriteRecord();

 System.out.println("--");

 }

 }

 inputStreamRs.nextLine(); //NOTE: Why did I include nextLine when I'm checking hasNext right away? Because hasNext doesn't go to the new line. It

goes to the next word

 }

 inputStreamCw.close();

 inputStreamRs.close();

 return officalStudentList;

 }

 public static void SelectOption6(ArrayList<Student> officalStudentList, char studentType) { //Method calculates No. of either courseWork Students or

ResearchStudents above or below the courseWork students average Or researchStudents average

 //Displays the results to client

 int mark = 0;

 int totalMarkCw = 0;

 int totalMarkRs = 0;

 int counterCw = 0;

 int counterRs = 0;

 Boolean correctStudentType = false;

 int averageAbove = 0;

 int averageBelow = 0;

 String type;

 int averageMarkCw = 0;

 int averageMarkRs = 0;

 for (Student person : officalStudentList) { //Loop that gathers total marks and number of course work and research students

 type = person.GetStudentType();

 if (type.equalsIgnoreCase("courseWorkStudent")) { //Check if object is a courseWork student

 CourseWorkStudent courseWorkStudent = (CourseWorkStudent) person; //NOTE: Downcasting: Casting super class (Student) --> Sub class

CourseWorkStudent

 mark = courseWorkStudent.CalculateCwMark();

 totalMarkCw += mark; //Get total Marks of courseWork students

 counterCw++; //Keep track of number of courseWork students

 }

 if (type.equalsIgnoreCase("researchStudent")) { //Check if object is a research student

 ResearchStudent researchStudent = (ResearchStudent) person; //NOTE: Downcasting: Casting super class (Student) --> Sub class ResearchStudent

 mark = researchStudent.CalculateRsMark();

 totalMarkRs += mark; //Get total Marks of research students

 counterRs++; //Keep track of number of research students

 }

 }

 averageMarkCw = totalMarkCw / counterCw; //Calculates average mark of courseWork

 averageMarkRs = totalMarkRs / counterRs; //Calculates average mark of researchStudents

 //NOTE: WHY not use for-each? Because can't combine to conditions

 for (int i = 0; i < officalStudentList.size() && studentType == 'C'; i++) { //Loops through if studentType selected at the start was C

 correctStudentType = false;

 Student person = officalStudentList.get(i); //NOTE: why not just downcast? Because person isn't getting retrieved through for each

 type = person.GetStudentType(); //This gets the student in arrayList

 if (type.equalsIgnoreCase("CourseWorkStudent")) {

 CourseWorkStudent courseWorkStudent = (CourseWorkStudent) person; //NOTE: Downcasting: Casting super class (Student) --> Sub class

CourseWorkStudent

 mark = courseWorkStudent.CalculateCwMark();

 correctStudentType = true;

 }

 if (mark >= averageMarkCw && correctStudentType) {

 averageAbove++;

 }

 if (mark <= averageMarkCw && correctStudentType) {

 averageBelow++;

 }

 }

 for (int i = 0; i < officalStudentList.size() && studentType == 'R'; i++) { //Loops through if studentType selected at the start was R

 //NOTE: WHY not use for-each? Because can't combine to conditions

 correctStudentType = false;

 Student person = officalStudentList.get(i); //NOTE: why not just downcast? Because person isn't getting retrieved through for each

 type = person.GetStudentType();

 if (type.equalsIgnoreCase("ResearchStudent")) {

 ResearchStudent researchStudent = (ResearchStudent) person; //NOTE: Downcasting: Casting super class (Student) --> Sub class ResearchStudent

 mark = researchStudent.CalculateRsMark();

 correctStudentType = true;

 }

 if (mark >= averageMarkRs && correctStudentType) {

 averageAbove++;

 }

 if (mark <= averageMarkRs && correctStudentType) {

 averageBelow++;

 }

 }

 System.out.printf("Number of students above average- %d \n", averageAbove);

 System.out.printf("Number of students below average- %d \n", averageBelow);

 }

 public static void SelectOption7(ArrayList<Student> officalStudentList) { //Method that gets the client to enter a ID and display corresponding details

about the student

 long num = 0;

 long studentNum = 0;

 Boolean studentNotFound = true;

 Scanner keyboard = new Scanner(System.in);

 System.out.println("Enter a student number: ");

 num = keyboard.nextLong(); //Client enters student number

 for (Student person : officalStudentList) {

 studentNum = person.GetStudentNum(); //Get the person object number

 if (num == studentNum) { //compare the user num with the person object number

 person.WriteRecord(); //NOTE: WHY didn't I downcast? Because Polymorphism + overrriding. refer to lecture

 studentNotFound = false;

 }

 }

 if (studentNotFound) {

 System.out.println("Student not found");

 }

 System.out.println("--");

 }

 public static void SelectOption8(ArrayList<Student> officalStudentList) { //Method that gets the client to enter first name and last name and display

corresponding details about the student(s)

 String fName;

 String lName;

 String studentFName;

 String studentLName;

 Boolean studentNotFound = true;

 Scanner keyboard = new Scanner(System.in);

 Scanner keyboard2 = new Scanner(System.in);

 System.out.println("Enter first name of student: ");

 fName = keyboard.nextLine();

 System.out.println("Enter last name of student");

 lName = keyboard2.nextLine();

 for (Student person : officalStudentList) { //Loop through all student objects in arrayList (officalStudentList)

 studentFName = person.GetFirstName();

 studentLName = person.GetLastName();

 if (fName.equalsIgnoreCase(studentFName) && lName.equalsIgnoreCase(studentLName)) { //compare user entered first name and last name with object

first and last name

 person.WriteRecord(); //NOTE: WHY didn't I downcast? Because Polymorphism + overrriding. refer to lecture

 studentNotFound = false;

 System.out.println("--");

 }

 }

 if (studentNotFound) { //Output error message if student not found

 System.out.println("Student not found in arrayList");

 }

 }

 public static ArrayList SelectOption9(ArrayList<Student> officalStudentList) { //Method that sorts arrayList by student number. Uses Selection sort

 for (int i = 0; i < officalStudentList.size() - 1; i++) { //Outer loop goes through all elements and stops at last element.

 int indexOfUnsortedSmallest = i;

 for (int j = i + 1; j < officalStudentList.size(); j++) { //J starts at next element after i

 Student person = new Student();

 person = officalStudentList.get(indexOfUnsortedSmallest); //Note: why can't you store into integer? Because you must get object then access

attributes

 long currentSmallNum = person.GetStudentNum();

 Student secondPerson = new Student();

 secondPerson = officalStudentList.get(j);

 long afterNum = secondPerson.GetStudentNum();

 if (afterNum < currentSmallNum) { //Stores current smallest element in a variable and goes through all elements are keeps comparing

 indexOfUnsortedSmallest = j;

 }

 }

 Student tempPerson = new Student();

 tempPerson = officalStudentList.get(indexOfUnsortedSmallest); //Get object storing UnsortedSmallestNumber

 Student tempPerson2 = new Student();

 tempPerson2 = officalStudentList.get(i); //Get the object storing the current unsortedNumber location we are dealing with (first in line)

 officalStudentList.set(indexOfUnsortedSmallest, tempPerson2); //This object goes in the spot where the object with UnsortedSmallestNumber used

to be

 officalStudentList.set(i, tempPerson); //Once you store the object with the UnsortedSmallestNumber value into an object. It get's placed at the back

of sorted list

 }

 return officalStudentList;

 }

 public static void SelectOption10(ArrayList<Student> officalStudentList) { //Method that writes sorted ArrayList to CSV

 String OutputFilePath = "output.csv";

 try {

 PrintWriter outputStream = new PrintWriter(OutputFilePath);

 outputStream.write("Title" + ","); //These statements write the headings into csv

 outputStream.write("Name" + ",");

 outputStream.write("Student Number" + ",");

 outputStream.write("Date of Birth" + ",");

 outputStream.write("StudentType" + "-" + ",");

 outputStream.write("OverallMark" + ",");

 outputStream.write("Grade" + ",");

 outputStream.write("Assessment1" + ",");

 outputStream.write("Assessment2" + ",");

 outputStream.write("Assessment3" + ",");

 outputStream.write("Assessment4" + ",");

 for (Student person : officalStudentList) { //Loops through all students in arrayList

 outputStream.write("\n");

 String title = person.GetTitle(); //Get the student information which is relevant for both courseWork and research Students

 String firstName = person.GetFirstName();

 String lastName = person.GetLastName();

 Long studentNum = person.GetStudentNum();

 int day = person.GetDay();

 int month = person.GetMonth();

 int year = person.GetYear();

 String studentType = person.GetStudentType();

 if (studentType.equalsIgnoreCase("courseWorkStudent")) { //Check whether we are dealing with courseWorkStudents

 CourseWorkStudent courseWorkStudent = (CourseWorkStudent) person; //NOTE: Downcasting: Casting super class (Student) --> Sub class

CourseWorkStudent

 int assignment1 = courseWorkStudent.GetAssignment1Mark(); //Get information specific to CourseWorkStudent only

 int assignment2 = courseWorkStudent.GetAssignment2Mark();

 int practicalMark = courseWorkStudent.GetPracticalMark();

 int examMark = courseWorkStudent.GetExamMark();

 int overallMark = courseWorkStudent.CalculateCwMark();

 String finalGrade = CalculateOverallGrade(overallMark);

 outputStream.write(title + ","); //Writes all the information about courseWorkStudent to CSV

 outputStream.write(firstName + " " + lastName + ",");

 outputStream.write(studentNum + ",");

 outputStream.write(day + "/" + month + "/" + year + ",");

 outputStream.write(studentType + ",");

 outputStream.write(overallMark + ",");

 outputStream.write(finalGrade + ",");

 outputStream.write(assignment1 + ",");

 outputStream.write(assignment2 + ",");

 outputStream.write(practicalMark + ",");

 outputStream.write(examMark + ",");

 }

 if (studentType.equalsIgnoreCase("ResearchStudent")) { //Check whether we are dealing with researchStudents

 ResearchStudent researchStudent = (ResearchStudent) person; //NOTE: Downcasting: Casting super class (Student) --> Sub class

researchStudent

 int proposalMark = researchStudent.GetProposalMark(); //Get information specific to researchStudents only

 int oralPresenationMark = researchStudent.GetOralPresenationMark();

 int thesisMark = researchStudent.GetThesisMark();

 int overallMark = researchStudent.CalculateRsMark();

 String finalGrade = CalculateOverallGrade(overallMark);

 outputStream.write(title + ","); //Writes all the information about ResearchStudent to CSV

 outputStream.write(firstName + " " + lastName + ",");

 outputStream.write(studentNum + ",");

 outputStream.write(day + "/" + month + "/" + year + ",");

 outputStream.write(studentType + ",");

 outputStream.write(overallMark + ",");

 outputStream.write(finalGrade + ",");

 outputStream.write(proposalMark + ",");

 outputStream.write(oralPresenationMark + ",");

 outputStream.write(thesisMark + ",");

 }

 }

 outputStream.close();

 System.out.println("Finished writing to file");

 } catch (IOException e) {

 System.out.println("Can't output to file");

 }

 }

 public static String CalculateOverallGrade(int overallMark) { //Method that calculates the grade given the overall mark received

 String overallGrade = null;

 if (overallMark < 0 || overallMark > 100) {

 System.out.println("Overall mark not valid");

 } else if (overallMark >= 80) {

 overallGrade = "HD";

 } else if (overallMark >= 70) {

 overallGrade = "D";

 } else if (overallMark >= 60) {

 overallGrade = "C";

 } else if (overallMark >= 50) {

 overallGrade = "P";

 } else if (overallMark >= 0) {

 overallGrade = "N";

 }

 return overallGrade;

 }

 public static void StudentInfo() {

 System.out.println("Name: Jin Cherng Chong ");

 System.out.println("Student number: 33170193 ");

 System.out.println("Mode of enrolment: Internal ");

 System.out.println("Tutorial attendance day and time: Thursday 3:30pm");

 System.out.println("--");

 }

}

Java source code for student class(Student.java)-

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package ict167assignment2;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.ArrayList;

import java.util.Scanner;

public class Student {

 private String title;

 private String firstName;

 private String lastName;

 private long studentNum;

 private int day;

 private int month;

 private int year;

 private String studentType;

 public Student() {

 title = "None";

 firstName = "None";

 lastName = "None";

 studentNum = 0;

 day = 0;

 month = 0;

 year = 0;

 studentType = "None";

 }

 public Student(String initialTitle, String initialFirstName, String initialLastName, long initialStudentNum, int initialDay, int initialMonth, int initialYear, String

initialStudentType) {

 title = initialTitle;

 firstName = initialFirstName;

 lastName = initialLastName;

 studentNum = initialStudentNum;

 day = initialDay;

 month = initialMonth;

 year = initialYear;

 studentType = initialStudentType;

 }

 /**

 * Pre-condition: title is a string that is neither non null or empty

 * Post-condition: assigns the newTitle parameter string to the current

 * title instance variable or displays an error message

 *

 */

 public void SetTitle(String newTitle) {

 if (!newTitle.isEmpty() && newTitle != null) { //Validates whether the title set by the user is empty or null. An error will be outputed when either of those

are true

 title = newTitle;

 } else {

 System.out.println("Error: Invalid title for student"); //Output error message when string in the parameter is empty or null

 }

 }

 /**

 * Pre-condition: firstName is a string that is neither non null or empty

 * Post-condition: assigns the newFirstName parameter string to the current

 * firstName instance variable or displays an error message

 *

 */

 public void SetFirstName(String newFirstName) {

 if (!newFirstName.isEmpty() && newFirstName != null) { //Validates whether the firstName set by the user is empty or null. An error will be outputed when

either of those are true

 firstName = newFirstName;

 } else {

 System.out.println("Error: Invalid first name for student"); //Output error message when string in the parameter is empty or null

 }

 }

 /**

 * Pre-condition: lastName is a string that is neither non null or empty

 * Post-condition: assigns the newLastName parameter string to the current

 * lastName instance variable or displays an error message

 *

 *

 */

 public void SetLastName(String newLastName) {

 if (!newLastName.isEmpty() && newLastName != null) { //Validates whether the lastName set by the user is empty or null. An error will be outputed when

either of those are true

 lastName = newLastName;

 } else {

 System.out.println("Error: Invalid last name for student"); //Output error message when string in the parameter is empty or null

 }

 }

 /**

 * Pre-condition: newStudentNum is a long Post-condition: assigns the

 * newStudentNum parameter long to the current studentNum instance variable

 *

 *

 *

 */

 public void SetStudentNum(long newStudentNum) { //Have to deal with duplicate student ID?

 studentNum = newStudentNum;

 }

 /**

 * Pre-condition: newDay is an integer, newMonth is an integer, and newYear

 * is an integer Post-condition: assigns the newDay Integer parameter to the

 * current day instance variable, assigns the newMonth Integer parameter to

 * the current month instance variable, and assigns the newYear Integer

 * parameter to the current year instance variable.

 *

 *

 *

 */

 public void SetDateOfBirth(int newDay, int newMonth, int newYear) {

 int oldDay = day;

 int oldMonth = month;

 Boolean maxTwentyNineDay = (newDay >= 1 && newDay <= 29); //Declares the minimum and maximum days for the months. Three variables needed as there

are three different maximum days

 Boolean maxThrityDay = (newDay >= 1 && newDay <= 30);

 Boolean maxThrityOneDay = (newDay >= 1 && newDay <= 31);

 Boolean Feb = (newMonth == 2); //Identifies the month entered

 Boolean thrityDayMonth = (newMonth == 4 || newMonth == 6 || newMonth == 9 || newMonth == 11);

 Boolean thrityOneDayMonth = (newMonth == 1 || newMonth == 3 || newMonth == 5 || newMonth == 7 || newMonth == 8 || newMonth == 10 || newMonth ==

12);

 if (newMonth >= 1 && newMonth <= 12) { //Check month entered is an actual month.

 month = newMonth; //NOTE: Why isn't day checked first? Because month determines day range

 } else {

 System.out.println("Error: Invalid month entered. Therefore, date of birth for student not set");

 return;

 }

 if (maxTwentyNineDay && Feb) { //Check day entered is compatible with month entered

 day = newDay;

 } else if (maxThrityDay && thrityDayMonth) {

 day = newDay;

 } else if (maxThrityOneDay && thrityOneDayMonth) {

 day = newDay;

 } else {

 System.out.println("Error: Invalid day for student. Therefore, date of birth for student not set");

 month = oldMonth;

 return; //returns early because it's pointless to furthur and we don't want to deal with a situation where year may be valid but month and day are not.

Because then we have many different combinations

 }

 if (newYear >= 2000) { //Check year entered is a valid year. The program assumes youngest student is born in year 2000. No max year added since this

program will function years into the future

 year = newYear;

 } else {

 System.out.println("Error: Invalid year entered for student. Therefore, date of birth for student not set");

 month = oldMonth;

 day = oldDay;

 return;

 }

 }

 /**

 * Pre-condition: studentType is a string that is either a researchStudent or courseWorkStudent

 * Post-condition: assigns the newStudentType parameter string to the current

 * studentType instance variable or displays an error message

 *

 *

 */

 public void SetStudentType(String newStudentType) {

 if (newStudentType.equalsIgnoreCase("CourseWorkStudent")) {

 studentType = "CourseWorkStudent";

 } else if (newStudentType.equalsIgnoreCase("ResearchStudent")) {

 studentType = "ResearchStudent";

 } else {

 System.out.println("Error: Invalid student type for student");

 }

 }

 /**

 * Post-condition: returns the instance variable title as a string

 */

 public String GetTitle() {

 return title;

 }

 /**

 * Post-condition: returns the instance variable firstName as a string

 */

 public String GetFirstName() {

 return firstName;

 }

 /**

 * Post-condition: returns the instance variable lastName as a string

 */

 public String GetLastName() {

 return lastName;

 }

 /**

 * Post-condition: returns the instance variable studentNum as a long

 */

 public long GetStudentNum() {

 return studentNum;

 }

 /**

 * Post-condition: returns the instance variable day as an integer

 */

 public int GetDay() {

 return day;

 }

 /**

 * Post-condition: returns the instance variable month as an integer

 */

 public int GetMonth() {

 return month;

 }

 /**

 * Post-condition: returns the instance variable year as an integer

 */

 public int GetYear() {

 return year;

 }

 /**

 * Post-condition: returns the instance variable studentType as a string

 */

 public String GetStudentType() {

 return studentType;

 }

 /**

 * Pre-condition: otherStudent is a student object Post-condition: Returns a

 * boolean value indicating whether the two objects have the same name and

 * date of birth

 *

 *

 *

 */

 public boolean IsEqual(Student otherStudent) {

 Boolean sameName = (this.firstName.equalsIgnoreCase(otherStudent.firstName) && this.lastName.equalsIgnoreCase(otherStudent.lastName)); //Verify

whether two object have same name

 Boolean sameDOB = (this.day == otherStudent.day && this.month == otherStudent.month && this.year == otherStudent.year); //Verify whether two objects

have same date of birth

 if (sameName && sameDOB) { //Check whether two student objects have same name and date of birth. Return true when they do have same name and date

of birth

 return true;

 } else {

 return false;

 }

 }

 /**

 * Pre-condition: object must be instantiated Post-condition: displays the

 * initial (unset) instance variables of the object

 *

 *

 */

 public void WriteRecord() {

 System.out.printf("Title- %s \n", title);

 System.out.printf("Name- %s %s \n", firstName, lastName);

 System.out.printf("Student Number- %d \n", studentNum);

 System.out.printf("Date of Birth- %d/%d/%d \n", day, month, year);

 System.out.printf("Student type- %s \n", studentType);

 }

 public static void main(String[] args) { //driver method for test purposes only

 //driver method for test purposes only

 int studentNo = 1;

 ArrayList<Student> studentList = new ArrayList<Student>(); //Create array list of students

 Scanner inputStream = null;

 char studentType = 'A';

 String typeOfStudent;

 try {

 inputStream = new Scanner(new File("student.txt")); //Opens the student.txt which contains list of students

 } catch (FileNotFoundException e) {

 System.out.println("Error opening file");

 System.exit(0); //Exit program when student.txt can't be opened

 }

 while (inputStream.hasNext()) {

 Student student = null; //NOTE: Declared new student object outside if-statement so it can be accessed. Both object courseWorkStudent and

ResearchStudent ARE students

 Boolean invalidStudentInformation = true;

 String title = inputStream.next(); //Get the title, firstname, lastname and student number from student.txt

 String firstName = inputStream.next();

 String lastName = inputStream.next();

 long studentNum = Long.parseLong(inputStream.next());

 String DOB = inputStream.next(); //Get date of birth from student.txt

 String[] splitDOB = DOB.split("/");

 int day = Integer.parseInt(splitDOB[0]);

 int month = Integer.parseInt(splitDOB[1]);

 int year = Integer.parseInt(splitDOB[2]);

 typeOfStudent = inputStream.next(); //Get student type from student.txt

 if (typeOfStudent.equalsIgnoreCase("CourseWorkStudent")) {

 student = new CourseWorkStudent(); //NOTE: Why can I assign class: courseWorkStudent() to class: student? Because courseWorkStudent extends

student thus courseWorkStudent Is a Student

 } else if (typeOfStudent.equalsIgnoreCase("ResearchStudent")) {

 student = new ResearchStudent(); //NOTE: Why can't I declare inside if-statement i.e ResearchStudent student = new ResearchStudent();? Because

can't be accessed outside if-statement

 } else {

 System.out.printf("Error: Incorrect student type specified for student \n");

 }

 if (student != null) { //Validate whether CourseWorkStudent OR ResearchStudent has been created. A null means neither has been created

 student.SetTitle(title);

 student.SetFirstName(firstName);

 student.SetLastName(lastName);

 student.SetStudentNum(studentNum);

 student.SetDateOfBirth(day, month, year);

 student.SetStudentType(typeOfStudent);

 invalidStudentInformation = (student.GetTitle().equals("None") || student.GetFirstName().equals("None") || student.GetLastName().equals("None") ||

student.GetStudentNum() == 0 || student.GetDay() == 0 || student.GetMonth() == 0 || student.GetYear() == 0 || student.GetStudentType().equals("None"));

 }

 if (invalidStudentInformation) {

 System.out.printf("Error: Invalid information for student %d. Therefore, the program will not save the student information \n", studentNo);

 System.out.println();

 } else {

 studentList.add(student); //Add the student to array list

 }

 studentNo++; //Keep track new students in student.txt

 }

 inputStream.close();

 //To add: Output all the students in array list + Way to test isEqual method + a way to test SetStudentType!!!

 //studentList.get(0).WriteRecord();

 for (Student person : studentList) { //Loops through all the students in the student list

 System.out.println("--");

 person.WriteRecord(); //NOTE: WHY didn't I downcast? Because Polymorphism + overrriding. refer to lecture

 }

 Student student1 = new Student(); //Testing isEqual

 Student student2 = new Student();

 Student student3 = new Student();

 Student student4 = new Student();

 student1 = studentList.get(7);

 student2 = studentList.get(8);

 student3 = studentList.get(9);

 student4 = studentList.get(10);

 Boolean equal = student1.IsEqual(student2);

 Boolean onlySameDOB = student2.IsEqual(student3);

 Boolean onlySameName = student3.IsEqual(student4);

 if(equal) {

 System.out.println("Same name and DOB");

 } else {

 System.out.println("No not equal");

 }

 if(onlySameDOB) {

 System.out.println("Same name and DOB");

 } else {

 System.out.println("No not equal");

 }

 if(onlySameName) {

 System.out.println("Same name and DOB");

 } else {

 System.out.println("No not equal");

 }

 }

 //Driver method for test purposes only

}

Java source code for CourseWorkStudent class(CourseWorkStudent.java)-

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package ict167assignment2;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.ArrayList;

import java.util.Scanner;

/**

 *

 * @author Admin

 */

public class CourseWorkStudent extends Student {

 private int assignment1Mark;

 private int assignment2Mark;

 private int practicalMark;

 private int examMark;

 private int overallMark;

 private String finalGrade;

 public CourseWorkStudent() {

 super();

 assignment1Mark = 0;

 assignment2Mark = 0;

 practicalMark = 0;

 examMark = 0;

 overallMark = 0;

 finalGrade = "None";

 }

 public CourseWorkStudent(String initialTitle, String initialFirstName, String initialLastName, long initialStudentNum, int initialDay, int initialMonth, int

initialYear, String initialStudentType, int initialAssignment1Mark, int initialAssignment2Mark, int initialPracticalMark, int initialExamMark, int initialOverallMark,

String initialFinalGrade) {

 super(initialTitle, initialFirstName, initialLastName, initialStudentNum, initialDay, initialMonth, initialYear, initialStudentType);

 assignment1Mark = initialAssignment1Mark;

 assignment2Mark = initialAssignment2Mark;

 practicalMark = initialPracticalMark;

 examMark = initialExamMark;

 overallMark = initialOverallMark;

 finalGrade = initialFinalGrade;

 }

 /**

 * Pre-condition: newAssignment1Mark is an integer Post-condition: assigns

 * the newAssignment1Mark parameter integer to the current assignment1Mark

 * instance variable

 *

 *

 */

 public void SetAssignment1Mark(int newAssignment1Mark) {

 if (newAssignment1Mark >= 0 && newAssignment1Mark <= 100) { //Check assignment 1 mark entered is a valid mark

 assignment1Mark = newAssignment1Mark;

 } else {

 System.out.println("Error: Invalid assignment 1 mark for student");

 }

 }

 /**

 * Pre-condition: newAssignment2Mark is an integer Post-condition: assigns

 * the newAssignment2Mark parameter integer to the current assignment2Mark

 * instance variable

 *

 *

 */

 public void SetAssignment2Mark(int newAssignment2Mark) {

 if (newAssignment2Mark >= 0 && newAssignment2Mark <= 100) { //Check assignment 2 mark entered is a valid mark

 assignment2Mark = newAssignment2Mark;

 } else {

 System.out.println("Error: Invalid assignment 2 mark for student");

 }

 }

 /**

 * Pre-condition: newPracticalMark is an integer Post-condition: assigns the

 * newPracticalMark parameter integer to the current practicalMark instance

 * variable

 *

 *

 */

 public void SetPracticalMark(int newPracticalMark) {

 if (newPracticalMark >= 0 && newPracticalMark <= 20) { //Check partical mark entered is a valid mark

 practicalMark = newPracticalMark;

 } else {

 System.out.println("Error: Invalid practical mark for student");

 }

 }

 /**

 * Pre-condition: newExamMark is an integer Post-condition: assigns the

 * newExamMark parameter integer to the current examMark instance variable

 *

 *

 */

 public void SetExamMark(int newExamMark) {

 if (newExamMark >= 0 && newExamMark <= 100) { //Check exam mark entered is a valid mark

 examMark = newExamMark;

 } else {

 System.out.println("Error: Invalid exam mark for student");

 }

 }

 /**

 * Pre-condition: newFinalGrade is a String Post-condition: assigns the

 * newFinalGrade parameter String to the current finalGrade instance variable

 *

 *

 */

 public void SetFinalGrade(String newFinalGrade) {

 if (newFinalGrade == "HD" || newFinalGrade == "D" || newFinalGrade == "P" || newFinalGrade == "C" || newFinalGrade == "N") { //Check final grade entered

is a valid grade

 finalGrade = newFinalGrade;

 } else {

 System.out.println("Error: Invalid final grade for student");

 }

 }

 /**

 * Post-condition: returns the instance variable title as a integer

 */

 public int GetAssignment1Mark() {

 return assignment1Mark;

 }

 /**

 * Post-condition: returns the instance variable firstName as a integer

 */

 public int GetAssignment2Mark() {

 return assignment2Mark;

 }

 /**

 * Post-condition: returns the instance variable lastName as a integer

 */

 public int GetPracticalMark() {

 return practicalMark;

 }

 /**

 * Post-condition: returns the instance variable lastName as a integer

 */

 public int GetExamMark() {

 return examMark;

 }

 /**

 * Pre-condition: otherStudent is a student object Post-condition: Returns a

 * boolean value indicating whether the two objects have the same name and

 * date of birth

 *

 */

 public int CalculateCwMark() {

 double weightedAssignment1Mark = (double) assignment1Mark / 100 * 25; //Must convert Integer to double. Double allows for dealing with decimal

 double weightedAssignment2Mark = (double) assignment2Mark / 100 * 25;

 double weightedPracticalMark = (double) practicalMark / 20 * 20;

 double weightedExamMark = (double) examMark / 100 * 30;

 overallMark = (int) (weightedAssignment1Mark + weightedAssignment2Mark + weightedPracticalMark + weightedExamMark); //Add all the weighted

assesments to get the overallMark

 double decimalInput = (weightedAssignment1Mark + weightedAssignment2Mark + weightedPracticalMark + weightedExamMark) - overallMark; //Get the

decimal to round

 if (decimalInput < 0.5) { //Check if decimal needs to be rounded down

 return overallMark;

 } else { //Check if decimal needs to be rounded up

 double decNumToRoundUp = 1 - decimalInput; //Determine the decimal needed to be added to make rounded the number up

 overallMark = (int) ((weightedAssignment1Mark + weightedAssignment2Mark + weightedPracticalMark + weightedExamMark) + decNumToRoundUp);

 return overallMark;

 }

 }

 /**

 * Pre-condition: object must be instantiated Post-condition: displays the

 * initial (unset) instance variables of the object

 *

 *

 */

 public void WriteRecord() {

 System.out.printf("Title- %s \n", GetTitle());

 System.out.printf("Name- %s %s \n", GetFirstName(), GetLastName());

 System.out.printf("Student Number- %d \n", GetStudentNum());

 System.out.printf("Date of Birth- %d/%d/%d \n", GetDay(), GetMonth(), GetYear());

 System.out.printf("Student type- %s \n", GetStudentType());

 System.out.printf("assignment 1 mark- %d \n", assignment1Mark);

 System.out.printf("assignment 2 mark- %d \n", assignment2Mark);

 System.out.printf("practical work mark- %d \n", practicalMark);

 System.out.printf("exam mark- %d \n", examMark);

 System.out.printf("overall mark- %d \n", overallMark);

 System.out.printf("overall mark- %s \n", finalGrade);

 }

 public static void main(String[] args) { //driver method for test purposes only

 //driver method for test purposes only

 int studentNo = 1;

 ArrayList<Student> studentList = new ArrayList<Student>(); //Create array list of students

 Scanner inputStream = null;

 char studentType = 'C';

 String typeOfStudent;

 Scanner inputStreamCw = null;

 Scanner keyboard = new Scanner(System.in);

 Boolean studentNotInStudentList = true;

 int counter = 0;

 long num = 1;

 long studentNum = 1;

 long markStudentNum = 1;

 int studentLocation = 0;

 try {

 inputStream = new Scanner(new File("student.txt")); //Opens the student.txt which contains list of students

 } catch (FileNotFoundException e) {

 System.out.println("Error opening file");

 System.exit(0); //Exit program when student.txt can't be opened

 }

 while (inputStream.hasNext()) {

 Student student = null; //NOTE: Declared new student object outside if-statement so it can be accessed. Both object courseWorkStudent and

ResearchStudent ARE students

 Boolean invalidStudentInformation = true;

 String title = inputStream.next(); //Get the title, firstname, lastname and student number from student.txt

 String firstName = inputStream.next();

 String lastName = inputStream.next();

 studentNum = Long.parseLong(inputStream.next());

 String DOB = inputStream.next(); //Get date of birth from student.txt

 String[] splitDOB = DOB.split("/");

 int day = Integer.parseInt(splitDOB[0]);

 int month = Integer.parseInt(splitDOB[1]);

 int year = Integer.parseInt(splitDOB[2]);

 typeOfStudent = inputStream.next(); //Get student type from student.txt

 if (typeOfStudent.equalsIgnoreCase("CourseWorkStudent")) {

 student = new CourseWorkStudent(); //NOTE: Why can I assign class: courseWorkStudent() to class: student? Because courseWorkStudent extends

student thus courseWorkStudent Is a Student

 } else if (typeOfStudent.equalsIgnoreCase("ResearchStudent")) {

 student = new ResearchStudent(); //NOTE: Why can't I declare inside if-statement i.e ResearchStudent student = new ResearchStudent();? Because

can't be accessed outside if-statement

 } else {

 System.out.printf("Error: Incorrect student type specified for student \n");

 }

 if (student != null) { //Validate whether CourseWorkStudent OR ResearchStudent has been created. A null means neither has been created

 student.SetTitle(title);

 student.SetFirstName(firstName);

 student.SetLastName(lastName);

 student.SetStudentNum(studentNum);

 student.SetDateOfBirth(day, month, year);

 student.SetStudentType(typeOfStudent);

 invalidStudentInformation = (student.GetTitle().equals("None") || student.GetFirstName().equals("None") || student.GetLastName().equals("None") ||

student.GetStudentNum() == 0 || student.GetDay() == 0 || student.GetMonth() == 0 || student.GetYear() == 0|| student.GetStudentType().equals("None"));

 }

 if (invalidStudentInformation) {

 System.out.printf("Error: Invalid information for student %d. Therefore, the program will not save the student information \n", studentNo);

 System.out.println();

 } else {

 studentList.add(student); //Add the student to array list

 }

 studentNo++; //Keep track new students in student.txt

 }

 inputStream.close();

 System.out.print("Enter a student: ");

 num = keyboard.nextLong();

 try {

 inputStreamCw = new Scanner(new File("courseWorkStudentMark.txt")); //Opens the student.txt which contains list of students

 } catch (FileNotFoundException e) {

 System.out.println("Error opening file");

 System.exit(0); //Exit program when student.txt can't be opened

 }

 try {

 for (Student person : studentList) {

 studentNum = person.GetStudentNum();

 //System.out.println(studentNum);

 if (num == studentNum) {

 studentNotInStudentList = false;

 studentLocation = counter;

 // System.out.println("found!!!!");

 }

 counter++;

 }

 if (studentNotInStudentList) {

 throw new Exception();

 }

 while (inputStreamCw.hasNext() && studentType == 'C') {

 markStudentNum = Long.parseLong(inputStreamCw.next());

 if (num == markStudentNum) {

 Student temp = studentList.get(studentLocation);

 CourseWorkStudent CourseWorkStudent = (CourseWorkStudent) temp; //NOTE: Why don't I need to set i.e

officalStudentList.set(studentLocation, CourseWorkStudent);? Because list holds pointers to objects thus when you change something in temp you change it in

orginal object from list

 int assignment1Mark = Integer.parseInt(inputStreamCw.next());

 CourseWorkStudent.SetAssignment1Mark(assignment1Mark);

 int assignment2Mark = Integer.parseInt(inputStreamCw.next());

 CourseWorkStudent.SetAssignment2Mark(assignment2Mark);

 int practicalMark = Integer.parseInt(inputStreamCw.next());

 CourseWorkStudent.SetPracticalMark(practicalMark);

 int examMark = Integer.parseInt(inputStreamCw.next());

 CourseWorkStudent.SetExamMark(examMark);

 int overallMark= CourseWorkStudent.CalculateCwMark();

 String finalGrade = CalculateOverallGrade(overallMark);

 CourseWorkStudent.SetFinalGrade(finalGrade);

 }

 inputStreamCw.nextLine(); //NOTE: Why did I include nextLine when I'm checking hasNext right away? Because hasNext doesn't go to the new line.

It goes to the next word

 }

 } catch (Exception e) {

 System.out.println("Exception: student can't be found in arrayList");

 }

 //To add: Output all the students in array list + Way to test isEqual method!!!

 for (Student person : studentList) { //Loops through all the students in the student list

 System.out.println("--");

 person.WriteRecord(); //NOTE: WHY didn't I downcast? Because Polymorphism + overrriding. refer to lecture

 }

 }

 public static String CalculateOverallGrade(int overallMark) { //driver method for test purposes only

 //driver method for test purposes only

 String overallGrade = null;

 if (overallMark < 0 || overallMark > 100) {

 System.out.println("Overall mark not valid");

 } else if (overallMark >= 80) {

 overallGrade = "HD";

 } else if (overallMark >= 70) {

 overallGrade = "D";

 } else if (overallMark >= 60) {

 overallGrade = "C";

 } else if (overallMark >= 50) {

 overallGrade = "P";

 } else if (overallMark >= 0) {

 overallGrade = "N";

 }

 return overallGrade;

 }

}

Java source code for ResearchStudent class(ResearchStudent.java)-

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package ict167assignment2;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.ArrayList;

import java.util.Scanner;

public class ResearchStudent extends Student {

 private int proposalMark;

 private int oralPresenationMark;

 private int thesisMark;

 private int overallMark;

 private String finalGrade;

 public ResearchStudent() {

 super();

 proposalMark = 0;

 oralPresenationMark = 0;

 thesisMark = 0;

 overallMark = 0;

 finalGrade = "None";

 }

 public ResearchStudent(String initialTitle, String initialFirstName, String initialLastName, long initialStudentNum, int initialDay, int initialMonth, int

initialYear, String initialStudentType, int initialProposalMark, int initialOralPresenationMark, int initialThesisMark, int initialOverallMark, String

initialFinalGrade) {

 super(initialTitle, initialFirstName, initialLastName, initialStudentNum, initialDay, initialMonth, initialYear, initialStudentType);

 proposalMark = initialProposalMark;

 oralPresenationMark = initialOralPresenationMark;

 thesisMark = initialThesisMark;

 overallMark = initialOverallMark;

 finalGrade = initialFinalGrade;

 }

 /**

 * Pre-condition: newProposalMark is an integer Post-condition: assigns the

 * newProposalMark parameter integer to the current proposalMark instance

 * variable

 *

 *

 */

 public void SetProposalMark(int newProposalMark) {

 if (newProposalMark >= 0 && newProposalMark <= 100) { //Check proposal mark entered is a valid mark

 proposalMark = newProposalMark;

 } else {

 System.out.println("Error: Invalid proposal mark for student");

 }

 }

 /**

 * Pre-condition: newOralPresenationMark is an integer Post-condition:

 * assigns the newOralPresenationMark parameter integer to the current

 * oralPresenationMark instance variable

 *

 *

 */

 public void SetOralPresenationMark(int newOralPresenationMark) {

 if (newOralPresenationMark >= 0 && newOralPresenationMark <= 20) { //Check oral presenation mark entered is a valid mark

 oralPresenationMark = newOralPresenationMark;

 } else {

 System.out.println("Error: Invalid oral presenation mark for student");

 }

 }

 /**

 * Pre-condition: newThesisMark is an integer Post-condition: assigns the

 * thesisMark parameter integer to the current thesisMark instance variable

 *

 *

 */

 public void SetThesisMark(int newThesisMark) {

 if (newThesisMark >= 0 && newThesisMark <= 100) { //Check thesis mark entered is a valid mark

 thesisMark = newThesisMark;

 } else {

 System.out.println("Error: Invalid thesis mark for student");

 }

 }

 /**

 * Pre-condition: newFinalGrade is a String Post-condition: assigns the

 * newFinalGrade parameter String to the current finalGrade instance

 * variable

 *

 *

 */

 public void SetFinalGrade(String newFinalGrade) {

 if (newFinalGrade == "HD" || newFinalGrade == "D" || newFinalGrade == "P" || newFinalGrade == "C" || newFinalGrade == "N") { //Check final grade entered

is a valid grade

 finalGrade = newFinalGrade;

 } else {

 System.out.println("Error: Invalid final grade for student");

 }

 }

 /**

 * Post-condition: returns the instance variable title as a integer

 */

 public int GetProposalMark() {

 return proposalMark;

 }

 /**

 * Post-condition: returns the instance variable firstName as a integer

 */

 public int GetOralPresenationMark() {

 return oralPresenationMark;

 }

 /**

 * Post-condition: returns the instance variable lastName as a integer

 */

 public int GetThesisMark() {

 return thesisMark;

 }

 public int CalculateRsMark() {

 double weightedProposalMark = (double) proposalMark / 100 * 30;

 double weightedOralPresenationMark = (double) oralPresenationMark / 20 * 10;

 double weightedThesisMark = (double) thesisMark / 100 * 60;

 overallMark = (int) (weightedProposalMark + weightedOralPresenationMark + weightedThesisMark); //Add all the weighted assesments to get the

overallMark

 double decimalInput = (weightedProposalMark + weightedOralPresenationMark + weightedThesisMark) - overallMark; //Get the decimal to round

 if (decimalInput < 0.5) { //Check if decimal needs to be rounded down

 return overallMark;

 } else { //Check if decimal needs to be rounded up

 double decNumToRoundUp = 1 - decimalInput; //Determine the decimal needed to be added to make rounded the number up

 overallMark = (int) ((weightedProposalMark + weightedOralPresenationMark + weightedThesisMark) + decNumToRoundUp);

 return overallMark;

 }

 }

 /**

 * Pre-condition: object must be instantiated Post-condition: displays the

 * initial (unset) instance variables of the object

 *

 *

 */

 public void WriteRecord() {

 System.out.printf("Title- %s \n", GetTitle());

 System.out.printf("Name- %s %s \n", GetFirstName(), GetLastName());

 System.out.printf("Student Number- %d \n", GetStudentNum());

 System.out.printf("Date of Birth- %d/%d/%d \n", GetDay(), GetMonth(), GetYear());

 System.out.printf("Student type- %s \n", GetStudentType());

 System.out.printf("Proposal mark- %d \n", proposalMark);

 System.out.printf("Oral presenation mark- %d \n", oralPresenationMark);

 System.out.printf("Thesis mark- %d \n", thesisMark);

 System.out.printf("overall mark- %d \n", overallMark);

 System.out.printf("overall mark- %s \n", finalGrade);

 }

 public static void main(String[] args) { //driver method for test purposes only

 //driver method for test purposes only

 int studentNo = 1;

 ArrayList<Student> studentList = new ArrayList<Student>(); //Create array list of students

 Scanner inputStream = null;

 char studentType = 'R';

 String typeOfStudent;

 Scanner inputStreamRs = null;

 Scanner keyboard = new Scanner(System.in);

 Boolean studentNotInStudentList = true;

 int counter = 0;

 long num = 1;

 long studentNum = 1;

 long markStudentNum = 1;

 int studentLocation = 0;

 try {

 inputStream = new Scanner(new File("student.txt")); //Opens the student.txt which contains list of students

 } catch (FileNotFoundException e) {

 System.out.println("Error opening file");

 System.exit(0); //Exit program when student.txt can't be opened

 }

 while (inputStream.hasNext()) {

 Student student = null; //NOTE: Declared new student object outside if-statement so it can be accessed. Both object courseWorkStudent and

ResearchStudent ARE students

 Boolean invalidStudentInformation = true;

 String title = inputStream.next(); //Get the title, firstname, lastname and student number from student.txt

 String firstName = inputStream.next();

 String lastName = inputStream.next();

 studentNum = Long.parseLong(inputStream.next());

 String DOB = inputStream.next(); //Get date of birth from student.txt

 String[] splitDOB = DOB.split("/");

 int day = Integer.parseInt(splitDOB[0]);

 int month = Integer.parseInt(splitDOB[1]);

 int year = Integer.parseInt(splitDOB[2]);

 typeOfStudent = inputStream.next(); //Get student type from student.txt

 if (typeOfStudent.equalsIgnoreCase("CourseWorkStudent")) {

 student = new CourseWorkStudent(); //NOTE: Why can I assign class: courseWorkStudent() to class: student? Because courseWorkStudent extends

student thus courseWorkStudent Is a Student

 } else if (typeOfStudent.equalsIgnoreCase("ResearchStudent")) {

 student = new ResearchStudent(); //NOTE: Why can't I declare inside if-statement i.e ResearchStudent student = new ResearchStudent();? Because

can't be accessed outside if-statement

 } else {

 System.out.printf("Error: Incorrect student type specified for student \n");

 }

 if (student != null) { //Validate whether CourseWorkStudent OR ResearchStudent has been created. A null means neither has been created

 student.SetTitle(title);

 student.SetFirstName(firstName);

 student.SetLastName(lastName);

 student.SetStudentNum(studentNum);

 student.SetDateOfBirth(day, month, year);

 student.SetStudentType(typeOfStudent);

 invalidStudentInformation = (student.GetTitle().equals("None") || student.GetFirstName().equals("None") || student.GetLastName().equals("None") ||

student.GetStudentNum() == 0 || student.GetDay() == 0 || student.GetMonth() == 0 || student.GetYear() == 0 || student.GetStudentType().equals("None"));

 }

 if (invalidStudentInformation) {

 System.out.printf("Error: Invalid information for student %d. Therefore, the program will not save the student information \n", studentNo);

 System.out.println();

 } else {

 studentList.add(student); //Add the student to array list

 }

 studentNo++; //Keep track new students in student.txt

 }

 inputStream.close();

 System.out.print("Enter a student: ");

 num = keyboard.nextLong();

 try {

 inputStreamRs = new Scanner(new File("researchStudentMark.txt")); //Opens the student.txt which contains list of students

 } catch (FileNotFoundException e) {

 System.out.println("Error opening file");

 System.exit(0); //Exit program when student.txt can't be opened

 }

 try {

 for (Student person : studentList) {

 studentNum = person.GetStudentNum();

 //System.out.println(studentNum);

 if (num == studentNum) {

 studentNotInStudentList = false;

 studentLocation = counter;

 // System.out.println("found!!!!");

 }

 counter++;

 }

 if (studentNotInStudentList) {

 throw new Exception();

 }

 while (inputStreamRs.hasNext() && studentType == 'R') {

 markStudentNum = Long.parseLong(inputStreamRs.next());

 if (num == markStudentNum) {

 Student temp = studentList.get(studentLocation);

 ResearchStudent ResearchStudent = (ResearchStudent) temp; //NOTE: Why don't I need to set i.e officalStudentList.set(studentLocation,

CourseWorkStudent);? Because list holds pointers to objects thus when you change something in temp you change it in orginal object from list

 int proposalMark = Integer.parseInt(inputStreamRs.next());

 ResearchStudent.SetProposalMark(proposalMark);

 int oralPresenationMark = Integer.parseInt(inputStreamRs.next());

 ResearchStudent.SetOralPresenationMark(oralPresenationMark);

 int thesisMark = Integer.parseInt(inputStreamRs.next());

 ResearchStudent.SetThesisMark(thesisMark);

 int overallMark = ResearchStudent.CalculateRsMark();

 String finalGrade = CalculateOverallGrade(overallMark);

 ResearchStudent.SetFinalGrade(finalGrade);

 }

 inputStreamRs.nextLine(); //NOTE: Why did I include nextL

 }

 } catch (Exception e) {

 System.out.println("Exception: student can't be found in arrayList");

 }

 //To add: Output all the students in array list + Way to test isEqual method!!!

 for (Student person : studentList) { //Loops through all the students in the student list

 System.out.println("--");

 person.WriteRecord(); //NOTE: WHY didn't I downcast? Because Polymorphism + overrriding. refer to lecture

 }

 }

 public static String CalculateOverallGrade(int overallMark) { //driver method for test purposes only

 //driver method for test purposes only

 String overallGrade = null;

 if (overallMark < 0 || overallMark > 100) {

 System.out.println("Overall mark not valid");

 } else if (overallMark >= 80) {

 overallGrade = "HD";

 } else if (overallMark >= 70) {

 overallGrade = "D";

 } else if (overallMark >= 60) {

 overallGrade = "C";

 } else if (overallMark >= 50) {

 overallGrade = "P";

 } else if (overallMark >= 0) {

 overallGrade = "N";

 }

 return overallGrade;

 }

}

